RESUMO
Targeting DNA repair, like PARP-1 and TOPO-I, shows promise in cancer therapy. However, resistance to single agents requires complex and costly combination strategies with significant side effects. Thus, there's an urgent need for single agents with dual inhibition. Current dual inhibitors focusing on the C-4 position of the phthalazinone core for PARP inhibition often have high molecular weights. Clinical use of PARP inhibitors is limited by hematological and other toxicities from concurrent PARP-2 inhibition. They're mainly effective in gynecological cancers, despite high PARP-1 and TOPO-I expression in various cancers. Moreover, their efficacy is limited to BRCA1-expressing breast cancer. In this study, we synthesized 27 dual inhibitors for PARP-1 and TOPO-I with molecular weights below 500 g/mol through hybridizing a phthalazinone core with a thiosemicarbazone linker. Among these, 6c demonstrated exceptional broad spectrum and potency against the NCI 60 cancer cell lines, with GI50 values from 1.65 to 5.63 µM. Notably, 6c exposed the highest PARP-1 inhibition (IC50 = 32.2 ± 3.26 nM) and a selectivity over PARP-2 (IC50 = 2844 ± 111 nM). Furthermore, 6c's inhibition of TOPO-I (IC50 = 46.2 ± 3.3 nM) surpassed the control camptothecin by eleven-fold. Mechanistically, 6c disrupted the cell cycle at the S phase, induced apoptosis, and displayed a favorable safety profile against normal cells. Compound 6c induced PARP trapping and synthetic lethality and showed high efficacy on BRCA1-expressing cell lines. So, decreasing the likelihood of cancer cell resistance to chemotherapy. Drug-likeness predictions and molecular modeling were also performed.
RESUMO
The primary treatment for chronic myeloid leukemia (CML) involves first- and second-generation tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, bosutinib, and dasatinib. However, these medications are ineffective against mutations in the kinase domain of the ABL1 protein, particularly in the protein with the T315I mutation. To address this, ponatinib (PNT), a third-generation inhibitor, was developed. Despite its efficacy in treating the BCR-ABL1T315I mutation, the use of PNT was briefly suspended in 2013 due to serious adverse effects but was subsequently reintroduced to the market. During the drug discovery and development process, it is rare to consolidate all information into a single article, as is the case with ponatinib. This review aims to compile and chronologically organize the research on the discovery of ponatinib using medicinal chemistry tools and computational methods. It includes in silico calculations, such as the octanol/water partition coefficient (cLogP) via SwissAdme, and 2D maps of intermolecular interactions through molecular docking. This approach enhances understanding for both specialists and those interested in medicinal chemistry and pharmacology, while also contextualizing future directions for further optimizations of ponatinib, facilitating the development of new analogs of this crucial inhibitor for the treatment of CML and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL).
RESUMO
INTRODUCTION: Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED: The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION: The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.
RESUMO
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Assuntos
Proteínas de Choque Térmico , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/fisiologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Transdução de Sinais , Neovascularização Patológica/metabolismo , Terapia de Alvo Molecular/métodosRESUMO
The serine/threonine kinase PAK4 plays a crucial role in regulating cell proliferation, survival, migration, and invasion. Overexpression of PAK4 correlates with poor prognosis in some cancers. KPT-9274, a PAK4 inhibitor, significantly reduces the growth of triple-negative breast cancer cells and mammary tumors in mouse models, and it also inhibits the growth of several other types of cancer cells. Interestingly, although it was first identified as a PAK4 inhibitor, KPT-9274 was also found to inhibit the enzyme NAMPT (nicotinamide phosphoribosyltransferase), which is crucial for NAD (nicotinamide adenine dinucleotide) synthesis and vital for cellular energy and growth. These results made us question whether growth inhibition in response to KPT-9274 was due to PAK4 inhibition, NAMPT inhibition, or both. To address this, we tested several other PAK4 inhibitors that also inhibit cell growth, to determine whether they also inhibit NAMPT activity. Our findings confirm that multiple PAK4 inhibitors also inhibit NAMPT activity. This was assessed both in cell-free assays and in a breast cancer cell line. Molecular docking studies were also used to help us better understand the mechanism by which PAK4 inhibitors block PAK4 and NAMPT activity, and we identified specific residues on the PAK4 inhibitors that interact with NAMPT and PAK4. Our results suggest that PAK4 inhibitors may have a more complex mechanism of action than previously understood, necessitating further exploration of how they influence cancer cell growth.
Assuntos
Citocinas , Simulação de Acoplamento Molecular , Nicotinamida Fosforribosiltransferase , Quinases Ativadas por p21 , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Humanos , Linhagem Celular Tumoral , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Acrilamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Feminino , Benzenoacetamidas/farmacologia , AminopiridinasRESUMO
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3ß (GSK-3ß) inhibitors, ß-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Acetyl-coenzyme A carboxylase (ACC) and diacylglycerol acyltransferase 2 (DGAT2) are recognized as potential therapeutic targets for nonalcoholic fatty liver disease (NAFLD). Inhibitors targeting ACC and DGAT2 have exhibited the capacity to reduce hepatic fat in individuals afflicted with NAFLD. However, there are no reports of dual inhibitors targeting ACC and DGAT2 for the treatment of NAFLD. Here, we aimed to identify potential dual inhibitors of ACC and DGAT2 using an integrated in silico approach. Machine learning-based virtual screening of commercial molecule databases yielded 395,729 hits, which were subsequently subjected to molecular docking aimed at both the ACC and DGAT2 binding sites. Based on the docking scores, nine compounds exhibited robust interactions with critical residues of both ACC and DGAT2, displaying favorable drug-like features. Molecular dynamics simulations (MDs) unveiled the substantial impact of these compounds on the conformational dynamics of the proteins. Furthermore, binding free energy assessments highlighted the notable binding affinities of specific compounds (V003-8107, G340-0503, Y200-1700, E999-1199, V003-6429, V025-4981, V006-1474, V025-0499, and V021-8916) to ACC and DGAT2. The compounds proposed in this study, identified using a multifaceted computational strategy, warrant experimental validation as potential dual inhibitors of ACC and DGAT2, with implications for the future development of novel drugs targeting NAFLD.
Assuntos
Acetil-CoA Carboxilase , Diacilglicerol O-Aciltransferase , Inibidores Enzimáticos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Sítios de Ligação , Ligação Proteica , Avaliação Pré-Clínica de Medicamentos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológicoRESUMO
Increasing the levels of antiapoptotic Bcl-2 proteins is an important way that cancer cells utilize to get out of apoptosis, underscoring their significance as promising targets for anticancer therapies. Lately, a primary compound 1 bearing thiazolidine-2,4-dione was discovered to exhibit comparable Mcl-1 inhibitory activity in comparison to WL-276. Herein, thirty-nine thiazolidine-2,4-dione analogs were yielded through incorporating different biphenyl moieties (R1), amino acid side chains (R2) and sulfonamides (R3) on 1. The findings indicated that certain compounds exhibited favorable inhibitory effects against Bcl-2/Mcl-1, while demonstrating limited or negligible binding affinity towards Bcl-xL. In particular, compounds 16 and 20 exhibited greater Bcl-2/Mcl-1 inhibition compared to AT-101, WL-276 and 1. Moreover, they demonstrated notable antiproliferative effects and significantly induced apoptosis in U937 cells. The western blot and co-immunoprecipitation assays confirmed that 20 could induce alterations in the expression of apoptosis-associated proteins to result in apoptosis through on-target Bcl-2 and Mcl-1 inhibition. In addition, 20 exhibited favorable stability profiles in both rat plasma and rat liver microsomes. In total, 20 could be used as a promising compound to discover Bcl-2/Mcl-1 dual inhibitors with favorable therapeutic properties.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Tiazolidinedionas , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Apoptose/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Animais , Ratos , Desenvolvimento de MedicamentosRESUMO
As members of the protein tyrosine kinase family, the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) play essential roles in cellular signal transduction pathways. Overexpression or abnormal activation of EGFR and HER2 can lead to the development of various solid tumors. Therefore, they have been confirmed as biological targets for the development of anticancer drugs. Due to the fact that many cancers are highly susceptible to developing resistance to single-target EGFR inhibitors in clinical practice, dual inhibitors that target both EGFR and HER2 have been developed to increase efficacy, reduce drug resistance and interactions, and improve patient compliance. Currently, a variety of EGFR/HER2 dual inhibitors have been developed, with several drugs already approved for marketing or in clinical trials. In this review, we summarize recent advancements in small-molecule EGFR/HER2 dual inhibitors by focusing on structure-activity relationships and share novel insights into developing anticancer agents.
RESUMO
Alzheimer's disease (AD) is the most common form of senile dementia, presenting a significant challenge for the development of effective treatments. AD is characterized by extracellular amyloid plaques and intraneuronal neurofibrillary tangles. Therefore, targeting both hallmarks through inhibition of amyloid beta (Aß) and tau aggregation presents a promising approach for drug development. Carbon dots (CD), with their high biocompatibility, minimal cytotoxicity, and blood-brain barrier (BBB) permeability, have emerged as promising drug nanocarriers. Congo red, an azo dye, has gathered significant attention for inhibiting amyloid-beta and tau aggregation. However, Congo red's inability to cross the BBB limits its potential to be used as a drug candidate for central nervous system (CNS) diseases. Furthermore, current studies only focus on using Congo red to target single disease hallmarks, without investigating dual inhibition capabilities. In this study, we synthesized Congo red-derived CD (CRCD) by using Congo red and citric acid as precursors, resulting in three variants, CRCD1, CRCD2 and CRCD3, based on different mass ratios of precursors. CRCD2 and CRCD3 exhibited sustained low cytotoxicity, and CRCD3 demonstrated the ability to traverse the BBB in a zebrafish model. Moreover, thioflavin T (ThT) aggregation assays and AFM imaging revealed CRCD as potent inhibitors against both tau and Aß aggregation. Notably, CRCD1 emerged as the most robust inhibitor, displaying IC50 values of 0.2 ± 0.1 and 2.1 ± 0.5 µg/mL against tau and Aß aggregation, respectively. Our findings underscore the dual inhibitory role of CRCD against tau and Aß aggregation, showcasing effective BBB penetration and positioning CRCD as potential nanodrugs and nanocarriers for the CNS. Hence, CRCD-based compounds represent a promising candidate in the realm of multi-functional AD therapeutics, offering an innovative formulation component for future developments in this area. STATEMENT OF SIGNIFICANCE: This article reports Congo red-derived carbon dots (CRCD) as dual inhibitors of tau and amyloid-beta (Aß) aggregation for the treatment of Alzheimer's disease (AD). The CRCD are biocompatible and show strong fluorescence, high stability, the ability to cross the blood-brain barrier, and the function of addressing two major pathological features of AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Carbono , Peixe-Zebra , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Carbono/química , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inibidores , Humanos , Vermelho Congo/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Pontos Quânticos/químicaRESUMO
Vascular endothelial growth factor is an angiogenic that promotes the development and metastasis of tumors (VEGF). The epidermal growth factor receptor, or EGFR, controls the division, growth, and death of cells via several signaling pathways. It has been found that most of the tyrosine kinase EGFR/VEGFR-2 inhibited by drugs that the FDA has approved are so far. The main objective of the present study was to identify an efficacious and selective dual inhibitor of VEGFR-2/EGFR for the treatment of cancer. Out of the 400 ligands tested against the kinases, 12 compounds demonstrated the best docking scores through molecular docking for the two kinases. Of these, only compound SCHEMBL2435814 inhibited the kinases with the highest score values when compared to a reference, vandetanib, as a dual inhibitor of EGFR/VEGFR-2 kinases through interaction with the identified active sites pocket. Following drug-likeness score toxicity and pharmacokinetic testing, the two compounds, SCHEMBL2435814 and vandetanib, were analyzed to determine how the two kinases interacted with each other. The results of calculations of π-cation interactions, hydrogen bonds, and hydrophobic interactions demonstrated a strong interaction between the two kinases and SCHEMBL2435814. Eventually, molecular dynamic modeling was used to assess the stability of complexes. This demonstrated many characteristics, including RMSF, RMSD, SASA, RG, and H-bond analysis, which demonstrated that SCHEMBL2435814 with the two kinases was more stable than vandetanib over a 100ns simulation period. By suppressing EGFR/VEGFR-2, chemical SCHEMBL2435814 may be able to postpone the signaling pathway of proteins that are essential to the advancement of cancer.
RESUMO
The NAPRT-induced increase in NAD+ levels was proposed as a mechanism contributing to hepatocellular carcinoma (HCC) resistance to NAMPT inhibitors. Thus, concurrently targeting NAMPT and NAPRT could be considered to overcome drug resistance. A BRD4 inhibitor downregulates the expression of NAPRT in HCC, and the combination of NAMPT inhibitors with BRD4 inhibitors simultaneously blocks NAD+ generation via salvage and the PH synthesis pathway. Moreover, the combination of the two agents significantly downregulated the expression of tumor-promoting genes and strongly promoted apoptosis. The present work identified various NAMPT/BRD4 dual inhibitors based on the multitargeted drug rationale. Among them, compound A2, which demonstrated the strongest effect, exhibited potent inhibition of NAMPT and BRD4 (IC50 = 35 and 58 nM, respectively). It significantly suppressed the growth and migration of HCC cells and facilitated their apoptosis. Furthermore, compound A2 also manifested a robust anticancer effect in HCCLM3 xenograft mouse models, with no apparent toxic effects. Our findings in this study provide an effective approach to target NAD+ metabolism for HCC treatment.
Assuntos
Antineoplásicos , Apoptose , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Proliferação de Células , Citocinas , Neoplasias Hepáticas , Nicotinamida Fosforribosiltransferase , Fatores de Transcrição , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Citocinas/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proteínas que Contêm BromodomínioRESUMO
Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.
Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , FarmacóforoRESUMO
Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cervical cancer treatment. In this study, we designed and synthesized a series of benzimidazole derivatives and evaluated their anti-cervical cancer activity. Compound 4r exhibited strong antiproliferative activity in different cervical cancer cell lines HeLa, SiHa and Ca Ski, and relative lower cytotoxicity to normal hepatic and renal cell lines LO2 and HEK-293t (IC50 values were at 21.08 µM and 23.96 µM respectively). Its IC50 value was at 3.38 µM to the SiHa cells. Further mechanistic studies revealed that 4r induced apoptosis, arrested cell cycle in G2/M phase, suppressed PI3K/Akt/mTOR pathway and inhibit the polymerization of tubulin. Molecular docking study suggested that 4r formed key H-bonds action with PI3Kα (PDB ID:8EXU) and tubulin (PDB ID:1SA0). Zebrafish acute toxicity experiments showed that high concentrations of 4r did not cause death or malformation of zebrafish embryos. All these results demonstrated that 4r would be a promising lead candidate for further development of novel PI3K and tubulin dual inhibitors in cervical cancer treatment.
Assuntos
Antineoplásicos , Benzimidazóis , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Moduladores de Tubulina , Tubulina (Proteína) , Neoplasias do Colo do Útero , Peixe-Zebra , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Tubulina (Proteína)/metabolismo , Proliferação de Células/efeitos dos fármacos , Animais , Relação Estrutura-Atividade , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Estrutura Molecular , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacosRESUMO
Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Piridinas , Animais , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Camundongos , Humanos , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Xantina Desidrogenase/antagonistas & inibidores , Xantina Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/metabolismoRESUMO
Ovarian cancer is one of the most familiar kinds of gynecological cancer seen in women. Though it is not as familiar as breast cancer, the survival rate for ovarian cancer is very low when compared with breast cancer. Even after being one among the familiar types, to date, there are no proper treatments available for ovarian cancer. All the treatments that are present currently show a high rate of recurrence after the treatment. Therefore, treating this silent killer from the roots is the need of the hour. PI3K/AKT/m- TOR pathway is one of the pathways that get altered during ovarian cancer. Studies are already going on for the inhibition of PI3K and mTOR separately. Efforts have been made to inhibit either PI3K or mTOR separately earlier. However, due to its side effects and resistance to the treatments available, current studies are based on the inhibition of PI3K and mTOR together. Inhibition of PI3K and mTOR simultaneously reduces the chances of negative feedback, thus decreasing the toxicity. This review contains the evolution of PI3K and mTOR drugs that are approved by the FDA and are in the trials for different cancer types, including Ovarian cancer. In this article, how a molecular targeted therapy can be made successful and free from toxicity for treating ovarian cancer is discussed. Therefore, this review paves the way for finding an effective scaffold rather than the clinical part. The scaffold thus selected can be further modified and synthesized in the future as dual PI3K/mTOR inhibitors specifically for OC.
RESUMO
Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.
Assuntos
Histona Acetiltransferases , Neoplasias , Camundongos , Animais , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/uso terapêutico , Domínios Proteicos , Neoplasias/tratamento farmacológico , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
INTRODUCTION: The pathways like Wingless-related integration (Wnt/ß-catenin) and PI3K play an important role in colorectal cancer (CRC) development; however, their roles are distinct in the process of oncogenesis. Despite their differences, these pathways interact through feedback mechanisms and regulate the common effectors both in the upstream and the downstream processes in normal and pathological conditions. Their ability to reciprocally control each other is a primary resistance mechanism for the selective inhibitors in CRC. AREA COVERED: This review highlights the Wnt/ß-catenin and PI3K pathways that are interrelated in CRC, recent advances and some key perspectives in developing inhibitors that could target the tankyrase enzyme and PI3K, apart from a brief description of the potential of dual inhibitors of PI3K and Tankyrases (TNKS). EXPERT OPINION: Recent research has focused on overcoming the challenges particularly relating to the resistance and efficacy of dual inhibitors targeting PI3K and tankyrase proteins. Despite these challenges, PI3K as well as tankyrases remain promising therapeutic targets for the treatment of solid tumors. The design of potent inhibitors is crucial to effectively block these protein signaling pathways. Moreover, it is essential to explore the potential of dual-target inhibition of other signaling pathways in conjunction with PI3K and tankyrase.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Terapia de Alvo Molecular , Inibidores de Fosfoinositídeo-3 Quinase , Tanquirases , Via de Sinalização Wnt , Humanos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Animais , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Antineoplásicos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
INTRODUCTION: The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED: This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION: Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.
Assuntos
Doença de Alzheimer , Descoberta de Drogas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Polifarmacologia , Desenho de FármacosRESUMO
Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.