RESUMO
Dung beetle leg joints exhibit a remarkable capacity to support substantial loads, which is a capability significantly influenced by their surface microstructure. The exploration of biomimetic designs inspired by the surface microstructure of these joints holds potential for the development of efficient self-locking structures. However, there is a notable absence of research focused on the surface microstructure of dung beetle leg joints. In this study, we investigated the structural characteristics of the surface microstructures present in dung beetle leg joints, identifying the presence of fish-scale-like, brush-like, and spike-like microstructures on the tibia and femur. Utilizing these surface microstructural characteristics, we designed a self-locking structure that successfully demonstrated functionality in both the rotational direction of the structure and self-locking in the reverse direction. At a temperature of 20 °C, the biomimetic closure featuring a self-locking mechanism was capable of generating a self-locking force of 18 N. The bionic intelligent joint, characterized by its unique surface microstructure, presents significant potential applications in aerospace and various engineering domains, particularly as a critical component in folding mechanisms. This research offers innovative design concepts for folding mechanisms, such as those utilized in satellite solar panels and solar panels for asteroid probes.
RESUMO
Remote sensing (RS) scene classification has received significant consideration because of its extensive use by the RS community. Scene classification in satellite images has widespread uses in remote surveillance, environmental observation, remote scene analysis, urban planning, and earth observations. Because of the immense benefits of the land scene classification task, various approaches have been presented recently for automatically classifying land scenes from remote sensing images (RSIs). Several approaches dependent upon convolutional neural networks (CNNs) are presented for classifying brutal RS scenes; however, they could only partially capture the context from RSIs due to the problematic texture, cluttered context, tiny size of objects, and considerable differences in object scale. This article designs a Remote Sensing Scene Classification using Dung Beetle Optimization with Enhanced Deep Learning (RSSC-DBOEDL) approach. The purpose of the RSSC-DBOEDL technique is to categorize different varieties of scenes that exist in the RSI. In the presented RSSC-DBOEDL technique, the enhanced MobileNet model is primarily deployed as a feature extractor. The DBO method could be implemented in this study for hyperparameter tuning of the enhanced MobileNet model. The RSSC-DBOEDL technique uses a multi-head attention-based long short-term memory (MHA-LSTM) technique to classify the scenes in the RSI. The simulation evaluation of the RSSC-DBOEDL approach has been examined under the benchmark RSI datasets. The simulation results of the RSSC-DBOEDL approach exhibited a more excellent accuracy outcome of 98.75 % and 95.07 % under UC Merced and EuroSAT datasets with other existing methods regarding distinct measures.
RESUMO
Path planning is a key problem in the autonomous navigation of mobile robots and a research hotspot in the field of robotics. Harris Hawk Optimization (HHO) faces challenges such as low solution accuracy and a slow convergence speed, and it easy falls into local optimization in path planning applications. For this reason, this paper proposes a Multi-strategy Improved Harris Hawk Optimization (MIHHO) algorithm. First, the double adaptive weight strategy is used to enhance the search capability of the algorithm to significantly improve the convergence accuracy and speed of path planning; second, the Dimension Learning-based Hunting (DLH) search strategy is introduced to effectively balance exploration and exploitation while maintaining the diversity of the population; and then, Position update strategy based on Dung Beetle Optimizer algorithm is proposed to reduce the algorithm's possibility of falling into local optimal solutions during path planning. The experimental results of the comparison of the test functions show that the MIHHO algorithm is ranked first in terms of performance, with significant improvements in optimization seeking ability, convergence speed, and stability. Finally, MIHHO is applied to robot path planning, and the test results show that in four environments with different complexities and scales, the average path lengths of MIHHO are improved by 1.99%, 14.45%, 4.52%, and 9.19% compared to HHO, respectively. These results indicate that MIHHO has significant performance advantages in path planning tasks and helps to improve the path planning efficiency and accuracy of mobile robots.
RESUMO
Chitosan, a natural polysaccharide, has attracted considerable attention as an environmentally friendly and highly efficient adsorbent for dye removal. It is usually produced by deacetylation or partial deacetylation of chitin. However, conventional sources of chitin and chitosan are limited, prompting the need for alternative sources with improved adsorption capabilities. Herein, this study focuses on exploring a novel chitin and chitosan source derived from the dung beetle and evaluates its potential for organic dye removal from aqueous solutions. The research involves the extraction and characterization of chitin and chitosan from dung beetle Heteronitis castelnaui (Harold, 1865) using various analytical techniques, including SEM, FT-IR, TGA, XRD, NMR, deacetylation degree and elemental analysis. The chitosan obtained was used for the formation of hydrogels with sodium alginate via cross-linking with calcium chloride. And then the prepared hydrogels were evaluated for its adsorption capacity through batch adsorption experiments using methylene blue as a model pollutant. The adsorption capacity for methylene blue was 1294.3 mg/g at room temperature with solution pH = 12, MB concentration of 1800 mg/L. Furthermore, the kinetics of the adsorption process were analyzed using pseudo-first-order and pseudo-second-order models to understand the rate of adsorption. The maximum adsorption capacities were determined using Langmuir and Freundlich isotherm models. This study provides valuable insights for the development of sustainable dye adsorption technologies, specifically investigating a novel chitosan source derived from the dung beetle.
RESUMO
In cloud computing (CC), task scheduling allocates the task to best suitable resource for execution. This article proposes a model for task scheduling utilizing the multi-objective optimization and deep learning (DL) model. Initially, the multi-objective task scheduling is carried out by the incoming user utilizing the proposed hybrid fractional flamingo beetle optimization (FFBO) which is formed by integrating dung beetle optimization (DBO), flamingo search algorithm (FSA) and fractional calculus (FC). Here, the fitness function depends on reliability, cost, predicted energy, and makespan, the predicted energy is forecasted by a deep residual network (DRN). Thereafter, task scheduling is accomplished based on DL using the proposed deep feedforward neural network fused long short-term memory (DFNN-LSTM), which is the combination of DFNN and LSTM. Moreover, when scheduling the workflow, the task parameters and the virtual machine's (VM) live parameters are taken into consideration. Task parameters are earliest finish time (EFT), earliest start time (EST), task length, task priority, and actual task running time, whereas VM parameters include memory utilization, bandwidth utilization, capacity, and central processing unit (CPU). The proposed model DFNN-LSTM+FFBO has achieved superior makespan, energy, and resource utilization of 0.188, 0.950J, and 0.238, respectively.
RESUMO
Accurate prediction of air quality is crucial for assessing the state of the atmospheric environment, especially considering the nonlinearity, volatility, and abrupt changes in air quality data. This paper introduces an air quality index (AQI) prediction model based on the Dung Beetle Algorithm (DBO) aimed at overcoming limitations in traditional prediction models, such as inadequate access to data features, challenges in parameter setting, and accuracy constraints. The proposed model optimizes the parameters of Variational Mode Decomposition (VMD) and integrates the Informer adaptive sequential prediction model with the Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Initially, the correlation coefficient method is utilized to identify key impact features from multivariate weather and meteorological data. Subsequently, penalty factors and the number of variational modes in the VMD are optimized using DBO. The optimized parameters are utilized to develop a variationally constrained model to decompose the air quality sequence. The data are categorized based on approximate entropy, and high-frequency data are fed into the Informer model, while low-frequency data are fed into the CNN-LSTM model. The predicted values of the subsystems are then combined and reconstructed to obtain the AQI prediction results. Evaluation using actual monitoring data from Beijing demonstrates that the proposed coupling prediction model of the air quality index in this paper is superior to other parameter optimization models. The Mean Absolute Error (MAE) decreases by 13.59%, the Root-Mean-Square Error (RMSE) decreases by 7.04%, and the R-square (R2) increases by 1.39%. This model surpasses 11 other models in terms of lower error rates and enhances prediction accuracy. Compared with the mainstream swarm intelligence optimization algorithm, DBO, as an optimization algorithm, demonstrates higher computational efficiency and is closer to the actual value. The proposed coupling model provides a new method for air quality index prediction.
RESUMO
China is rich in mineral resources, and problems of goaf formed in the process of resource exploitation are serious obstacle to the development of China's economic, so it is of great significance for the assessment and management of goafs. This paper introduces emerging dung beetle optimizer (DBO) algorithm and establishes DBO-BP (back-propagation) model, at the same time, it is compared with a series of heuristic algorithms coupled with BP neural network models: PSO (particle swarm optimization) - BP model, WOA (whale optimization algorithm) - BP model, and SSA (sparrow search algorithm) - BP model. Then they are applied to evaluate the hazard of goafs, the result shows that the DBO-BP model gets the highest train set accuracy, which is at least 2.7 % higher than other models, while the DBO-BP model obtains the highest test set accuracy, meanwhile its effectiveness and stability have also been proven. Finally we apply the established DBO-BP model to evaluate the hazard of the tungsten mine goaf of Yaogangshan in Hunan Province, and its excellent practicability was confirmed. This paper may provide a reference for the solution of nonlinear engineering problems.
RESUMO
A new transfer approach was proposed to share calibration models of the hexamethylenetetramine-acetic acid solution for studying hexamethylenetetramine concentration values across different near-infrared (NIR) spectrometers. This approach combines Savitzky-Golay first derivative (S_G_1) and orthogonal signal correction (OSC) preprocessing, along with feature variable optimization using an adaptive chaotic dung beetle optimization (ACDBO) algorithm. The ACDBO algorithm employs tent chaotic mapping and a nonlinear decreasing strategy, enhancing the balance between global and local search capabilities and increasing population diversity to address limitations observed in traditional dung beetle optimization (DBO). Validated using the CEC-2017 benchmark functions, the ACDBO algorithm demonstrated superior convergence speed, accuracy, and stability. In the context of a partial least squares (PLS) regression model for transferring hexamethylenetetramine-acetic acid solutions using NIR spectroscopy, the ACDBO algorithm excelled over alternative methods such as uninformative variable elimination, competitive adaptive reweighted sampling, cuckoo search, grey wolf optimizer, differential evolution, and DBO in efficiency, accuracy of feature variable selection, and enhancement of model predictive performance. The algorithm attained outstanding metrics, including a determination coefficient for the calibration set (Rc2) of 0.99999, a root mean square error for the calibration set (RMSEC) of 0.00195%, a determination coefficient for the validation set (Rv2) of 0.99643, a root mean squared error for the validation set (RMSEV) of 0.03818%, residual predictive deviation (RPD) of 16.72574. Compared to existing OSC, slope and bias correction (S/B), direct standardization (DS), and piecewise direct standardization (PDS) model transfer methods, the novel strategy enhances the accuracy and robustness of model predictions. It eliminates irrelevant background information about the hexamethylenetetramine concentration, thereby minimizing the spectral discrepancies across different instruments. As a result, this approach yields a determination coefficient for the prediction set (Rp2) of 0.96228, a root mean squared error for the prediction set (RMSEP) of 0.12462%, and a relative error rate (RER) of 17.62331, respectively. These figures closely follow those obtained using DS and PDS, which recorded Rp2, RMSEP, and RER values of 0.97505, 0.10135%, 21.67030, and 0.98311, 0.08339%, 26.33552, respectively. Unlike conventional methods such as OSC, S/B, DS, and PDS, this novel approach does not require the analysis of identical samples across different instruments. This characteristic significantly broadens its applicability for model transfer, which is particularly beneficial for transferring specific measurement samples.
RESUMO
The Dung beetle optimization (DBO) algorithm, devised by Jiankai Xue in 2022, is known for its strong optimization capabilities and fast convergence. However, it does have certain limitations, including insufficiently random population initialization, slow search speed, and inadequate global search capabilities. Drawing inspiration from the mathematical properties of the Sinh and Cosh functions, we proposed a new metaheuristic algorithm, Sinh-Cosh Dung Beetle Optimization (SCDBO). By leveraging the Sinh and Cosh functions to disrupt the initial distribution of DBO and balance the development of rollerball dung beetles, SCDBO enhances the search efficiency and global exploration capabilities of DBO through nonlinear enhancements. These improvements collectively enhance the performance of the dung beetle optimization algorithm, making it more adept at solving complex real-world problems. To evaluate the performance of the SCDBO algorithm, we compared it with seven typical algorithms using the CEC2017 test functions. Additionally, by successfully applying it to three engineering problems, robot arm design, pressure vessel problem, and unmanned aerial vehicle (UAV) path planning, we further demonstrate the superiority of the SCDBO algorithm.
RESUMO
The dung beetle optimization (DBO) algorithm, a swarm intelligence-based metaheuristic, is renowned for its robust optimization capability and fast convergence speed. However, it also suffers from low population diversity, susceptibility to local optima solutions, and unsatisfactory convergence speed when facing complex optimization problems. In response, this paper proposes the multi-strategy improved dung beetle optimization algorithm (MDBO). The core improvements include using Latin hypercube sampling for better population initialization and the introduction of a novel differential variation strategy, termed "Mean Differential Variation", to enhance the algorithm's ability to evade local optima. Moreover, a strategy combining lens imaging reverse learning and dimension-by-dimension optimization was proposed and applied to the current optimal solution. Through comprehensive performance testing on standard benchmark functions from CEC2017 and CEC2020, MDBO demonstrates superior performance in terms of optimization accuracy, stability, and convergence speed compared with other classical metaheuristic optimization algorithms. Additionally, the efficacy of MDBO in addressing complex real-world engineering problems is validated through three representative engineering application scenarios namely extension/compression spring design problems, reducer design problems, and welded beam design problems.
RESUMO
Since 1968, the Australian Dung Beetle Project has carried out field releases of 43 deliberately introduced dung beetle species for the biological control of livestock dung and dung-breeding pests. Of these, 23 species are known to have become established. For most of these species, sufficient time has elapsed for population expansion to fill the extent of their potential geographic range through both natural and human-assisted dispersal. Consequently, over the last 20 years, extensive efforts have been made to quantify the current distribution of these introduced dung beetles, as well as the seasonal and spatial variation in their activity levels. Much of these data and their associated metadata have remained unpublished, and they have not previously been synthesized into a cohesive dataset. Here, we collate and report data from the three largest dung beetle monitoring projects from 2001 to 2022. Together, these projects encompass data collected from across Australia, and include records for all 23 species of established dung beetles introduced for biocontrol purposes. In total, these data include 22,718 presence records and 213,538 absence records collected during 10,272 sampling events at 546 locations. Most presence records (97%) include abundance data. In total, 1,752,807 dung beetles were identified as part of these data. The distributional occurrence and abundance data can be used to explore questions such as factors influencing dung beetle species distributions, dung beetle biocontrol, and insect-mediated ecosystem services. These data are provided under a CC-BY-NC 4.0 license and users are encouraged to cite this data paper when using the data.
Assuntos
Besouros , Espécies Introduzidas , Besouros/fisiologia , Animais , Austrália , Fatores de Tempo , Distribuição Animal , Dinâmica Populacional , Densidade DemográficaRESUMO
Accurate measurement of coal gas permeability helps prevent coal gas safety accidents effectively. To predict permeability more accurately, we propose the IDBO-BPNN coal body gas permeability prediction model. This model combines the Improved Dung Beetle algorithm (IDBO) with the BP neural network (BPNN). First, the Sine chaotic mapping, Osprey optimization algorithm, and adaptive T-distribution dynamic selection strategy are integrated to enhance the DBO algorithm and improve its global search capability. Then, IDBO is utilized to optimize the weights and thresholds in BPNN to enhance its prediction accuracy and mitigate the risk of overfitting to some extent. Secondly, based on the influencing factors of gas permeability, effective stress, gas pressure, temperature, and compressive strength, they are chosen as the coupling indicators. The SPSS 27 software is used to analyze the correlation among the indicators using the Pearson correlation coefficient matrix. Additionally, the Kernel Principal Component Analysis (KPCA) is employed to extract the original data. Then, the original data is divided into principal component data for the model input. The prediction results of the IDBO-BPNN model are compared with those of the PSO-BPNN, PSO-LSSVM, PSO-SVM, MPA-BPNN, WOA-SVM, BES-SVM, and DPO-BPNN models. This comparison assesses the capability of KPCA to enhance the accuracy of model predictions and the performance of the IDBO-BPNN model. Finally, the IDBO-BPNN model is tested using data from a coal mine in Shanxi. The results indicate that the predicted outcome closely aligns with the actual value, confirming the reliability and stability of the model. Therefore, the IDBO-BPNN model is better suited for predicting coal gas permeability in academic research writing.
RESUMO
Viviparity is generally considered to be rare in animals. In nematodes, only six species of Rhabditida are viviparous. Five of these species have been identified in association with Onthophagus dung beetles, with Tokorhabditis atripennis being repeatedly isolated from the dung beetle Onthophagus atripennis in Japan. T. atripennis is easy to culture in a laboratory setting, and its host, O. atripennis, is distributed all over Japan. Therefore, T. atripennis is an ideal candidate for ecological and evolutionary studies on viviparity. However, the extent of their distribution and relationship with dung beetles, as well as habitats, remain unclear. In the present study, we conducted field surveys and successfully isolated 27 strains of viviparous nematodes associated with tunneler dung beetles from various regions of Japan, all of which were identified as T. atripennis. T. atripennis exhibited a strong association with Onthophagus dung beetles, especially O. apicetinctus and O. atripennis. And it was predominantly found in specific anatomical locations on the beetle bodies, such as the 'groove between pronotum and elytron' and the 'back of the wings'. Our findings suggest that Onthophagus species are the primary hosts for T. atripennis, and T. atripennis exhibits a close relationship with the living environments of tunneler beetles. This association may play a significant role in the evolution of viviparity in nematodes.
RESUMO
Many symbionts are sexually transmitted and impact their host's development, ecology, and evolution. While the significance of symbionts that cause sexually transmitted diseases (STDs) is relatively well understood, the prevalence and potential significance of the sexual transmission of mutualists remain elusive. Here, we study the effects of sexually transmitted mutualist nematodes on their dung beetle hosts. Symbiotic Diplogastrellus monhysteroides nematodes are present on the genitalia of male and female Onthophagus beetles and are horizontally transmitted during mating and vertically passed on to offspring during oviposition. A previous study indicates that the presence of nematodes benefits larval development and life history in a single host species, Onthophagus taurus. However, Diplogastrellus nematodes can be found in association with a variety of beetle species. Here, we replicate these previous experiments, assess whether the beneficial effects extend to other host species, and test whether nematode-mediated effects differ between male and female host beetles. Rearing three relatively distantly related dung beetle species with and without nematodes, we find that the presence of nematodes benefits body size, but not development time or survival across all three species. Likewise, we found no difference in the benefit of nematodes to male compared to female beetles. These findings highlight the role of sexually transmitted mutualists in the evolution and ecology of dung beetles.
RESUMO
This manuscript proposes thermal images using PCSAN-Net-DBOA Initially, the input images are engaged from the database for mastology research with infrared image (DMR-IR) dataset for breast cancer classification. The adaptive distorted Gaussian matched-filter (ADGMF) was used in removing noise and increasing the quality of infrared thermal images. Next, these preprocessed images are given into one-dimensional quantum integer wavelet S-transform (OQIWST) for extracting Grayscale statistic features like standard deviation, mean, variance, entropy, kurtosis, and skewness. The extracted features are given into the pyramidal convolution shuffle attention neural network (PCSANN) for categorization. In general, PCSANN does not show any adaption optimization techniques to determine the optimal parameter to offer precise breast cancer categorization. This research proposes the dung beetle optimization algorithm (DBOA) to optimize the PCSANN classifier that accurately diagnoses breast cancer. The BCD-PCSANN-DBO method is implemented using Python. To classify breast cancer, performance metrics including accuracy, precision, recall, F1 score, error rate, RoC, and computational time are considered. Performance of the BCD-PCSANN-DBO approach attains 29.87%, 28.95%, and 27.92% lower computation time and 13.29%, 14.35%, and 20.54% greater RoC compared with existing methods like breast cancer diagnosis utilizing thermal infrared imaging and machine learning approaches(BCD-CNN), breast cancer classification from thermal images utilizing Grunwald-Letnikov assisted dragonfly algorithm-based deep feature selection (BCD-VGG16) and Breast cancer detection in thermograms using deep selection based on genetic algorithm and Gray Wolf Optimizer (BCD-SqueezeNet), respectively. RESEARCH HIGHLIGHTS: The input images are engaged from the breast cancer dataset for breast cancer classification. The ADQMF was used in removing noise and increasing the quality of infrared thermal images. The extracted features are given into the PCSANN for categorization. DBOA is proposed to optimize PCSANN classifier that classifies breast cancer precisely. The proposed BCD-PCSANN-DBO method is implemented using Python.
Assuntos
Algoritmos , Neoplasias da Mama , Raios Infravermelhos , Redes Neurais de Computação , Neoplasias da Mama/classificação , Neoplasias da Mama/diagnóstico por imagem , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Termografia/métodosRESUMO
In order to improve the accuracy of concrete dynamic principal identification, a concrete dynamic principal identification model based on Improved Dung Beetle Algorithm (IDBO) optimized Long Short-Term Memory (LSTM) network is proposed. Firstly, the apparent stress-strain curves of concrete containing damage evolution were measured by Split Hopkinson Pressure Bar (SHPB) test to decouple and separate the damage and rheology, and this system was modeled by using LSTM network. Secondly, for the problem of low convergence accuracy and easy to fall into local optimum of Dung Beetle Algorithm (DBO), the greedy lens imaging reverse learning initialization population strategy, the embedded curve adaptive weighting factor and the PID control optimal solution perturbation strategy are introduced, and the superiority of IDBO algorithm is proved through the comparison of optimization test with DBO, Harris Hawk Optimization Algorithm, Gray Wolf Algorithm, and Fruit Fly Algorithm and the combination of LSTM is built to construct the IDBO-LSTM dynamic homeostasis identification model. The final results show that the IDBO-LSTM model can recognize the concrete material damage without considering the damage; in the case of considering the damage, the IDBO-LSTM prediction curves basically match the SHPB test curves, which proves the feasibility and excellence of the proposed method.
RESUMO
Temperature and humidity, along with concentrations of ammonia and hydrogen sulfide, are critical environmental factors that significantly influence the growth and health of pigs within porcine habitats. The ability to accurately predict these environmental variables in pig houses is pivotal, as it provides crucial decision-making support for the precise and targeted regulation of the internal environmental conditions. This approach ensures an optimal living environment, essential for the well-being and healthy development of the pigs. The existing methodologies for forecasting environmental factors in pig houses are currently hampered by issues of low predictive accuracy and significant fluctuations in environmental conditions. To address these challenges in this study, a hybrid model incorporating the improved dung beetle algorithm (DBO), temporal convolutional networks (TCNs), and gated recurrent units (GRUs) is proposed for the prediction and optimization of environmental factors in pig barns. The model enhances the global search capability of DBO by introducing the Osprey Eagle optimization algorithm (OOA). The hybrid model uses the optimization capability of DBO to initially fit the time-series data of environmental factors, and subsequently combines the long-term dependence capture capability of TCNs and the non-linear sequence processing capability of GRUs to accurately predict the residuals of the DBO fit. In the prediction of ammonia concentration, the OTDBO-TCN-GRU model shows excellent performance with mean absolute error (MAE), mean square error (MSE), and coefficient of determination (R2) of 0.0474, 0.0039, and 0.9871, respectively. Compared with the DBO-TCN-GRU model, OTDBO-TCN-GRU achieves significant reductions of 37.2% and 66.7% in MAE and MSE, respectively, while the R2 value is improved by 2.5%. Compared with the OOA model, the OTDBO-TCN-GRU achieved 48.7% and 74.2% reductions in the MAE and MSE metrics, respectively, while the R2 value improved by 3.6%. In addition, the improved OTDBO-TCN-GRU model has a prediction error of less than 0.3 mg/m3 for environmental gases compared with other algorithms, and has less influence on sudden environmental changes, which shows the robustness and adaptability of the model for environmental prediction. Therefore, the OTDBO-TCN-GRU model, as proposed in this study, optimizes the predictive performance of environmental factor time series and offers substantial decision support for environmental control in pig houses.
RESUMO
To solve the problems of high computational cost and the long time required by the simulation and calculation of aeroengines' exhaust systems, a method of predicting the characteristics of infrared radiation based on the hybrid kernel extreme learning machine (HKELM) optimized by the improved dung beetle optimizer (IDBO) was proposed. Firstly, the Levy flight strategy and variable spiral strategy were introduced to improve the optimization performance of the dung beetle optimizer (DBO) algorithm. Secondly, the superiority of IDBO algorithm was verified by using 23 benchmark functions. In addition, the Wilcoxon signed-rank test was applied to evaluate the experimental results, which proved the superiority of the IDBO algorithm over other current prominent metaheuristic algorithms. Finally, the hyperparameters of HKELM were optimized by the IDBO algorithm, and the IDBO-HKELM model was applied to the prediction of characteristics of infrared radiation of a typical axisymmetric nozzle. The results showed that the RMSE and MAE of the IDBO-HKELM model were 20.64 and 8.83, respectively, which verified the high accuracy and feasibility of the proposed method for predictions of aeroengines' infrared radiation characteristics.
RESUMO
Solar power is a renewable energy source, and its efficient development and utilization are important for achieving global carbon neutrality. However, partial shading conditions cause the output of PV systems to exhibit nonlinear and multipeak characteristics, resulting in a loss of output power. In this paper, we propose a novel Maximum Power Point Tracking (MPPT) technique for PV systems based on the Dung Beetle Optimization Algorithm (DBO) to maximize the output power of PV systems under various weather conditions. We performed a performance comparison analysis of the DBO technique with existing renowned MPPT techniques such as Squirrel Search Algorithm, Cuckoo search Optimization, Horse Herd Optimization Algorithm, Particle Swarm Optimization, Adaptive Factorized Particle Swarm Algorithm and Gray Wolf Optimization Hybrid Nelder-mead. The experimental validation is carried out on the HIL + RCP physical platform, which fully demonstrates the advantages of the DBO technique in terms of tracking speed and accuracy. The results show that the proposed DBO achieves 99.99% global maximum power point (GMPP) tracking efficiency, as well as a maximum improvement of 80% in convergence rate stabilization rate, and a maximum improvement of 8% in average power. A faster, more efficient and robust GMPP tracking performance is a significant contribution of the DBO controller.