Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Pain Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954217

RESUMO

INTRODUCTION: Closed-loop spinal cord stimulation (CL-SCS) is a recently introduced system that records evoked compound action potentials (ECAPs) from the spinal cord elicited by each stimulation pulse and uses this information to automatically adjust the stimulation strength in real time, known as ECAP-controlled SCS. This innovative system compensates for fluctuations in the distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a predetermined target level. This data collection study was designed to assess the performance of the first CL-SCS system in a real-world setting under normal conditions of use in multiple European centers. The study analyzes and presents clinical outcomes and electrophysiological and device data and compares these findings with those reported in earlier pre-market studies of the same system. METHODS: This prospective, multicenter, observational study was conducted in 13 European centers and aimed to gather electrophysiological and device data. The study focused on the real-world application of this system in treating chronic pain affecting the trunk and/or limbs, adhering to standard conditions of use. In addition to collecting and analyzing basic demographic information, the study presents data from the inaugural patient cohort permanently implanted at multiple European centers. RESULTS: A significant decrease in pain intensity was observed for overall back or leg pain scores (verbal numerical rating score [VNRS]) between baseline (mean ± standard error of the mean [SEM]; n = 135; 8.2 ± 0.1), 3 months (n = 93; 2.3 ± 0.2), 6 months (n = 82; 2.5 ± 0.3), and 12 months (n = 76; 2.5 ± 0.3). Comparison of overall pain relief (%) to the AVALON and EVOKE studies showed no significant differences at 3 and 12 months between the real-world data release (RWE; 71.3%; 69.6%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies. Further investigation was undertaken to objectively characterize the physiological parameters of SCS therapy in this cohort using the metrics of percent time above ECAP threshold (%), dose ratio, and dose accuracy (µV), according to previously described methods. Results showed that a median of 90% (40.7-99.2) of stimuli were above the ECAP threshold, with a dose ratio of 1.3 (1.1-1.4) and dose accuracy of 4.4 µV (0.0-7.1), based on data from 236, 230, and 254 patients, respectively. Thus, across all three metrics, the majority of patients had objective therapy metrics corresponding to the highest levels of pain relief in previously reported studies (usage over threshold > 80%, dose ratio > 1.2, and error < 10 µV). CONCLUSIONS: In conclusion, this study provides valuable insights into the real-world application of the ECAP-controlled CL-SCS system, highlighting its potential for maintaining effective pain relief and objective neurophysiological therapy metrics at levels seen in randomized control trials, and potential for quantifying patient burden associated with SCS system use via patient-device interaction metrics. CLINICAL TRIAL REGISTRATION: In the Netherlands, the study is duly registered on the International Clinical Trials Registry Platform (Trial NL7889). In Germany, the study is duly registered as NCT05272137 and in the United Kingdom as ISCRTN27710516 and has been reviewed by the ethics committee in both countries.

2.
Heliyon ; 10(13): e33967, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071718

RESUMO

Magnesium, valued for its lightweight, recyclability, and biocompatibility, faces challenges like its poor wear behavior and mechanical properties that limit its adaptation for a multitude of applications. In this study, various statistical analyses, and machine learning (ML) techniques were employed to optimize equal channel angular pressing (ECAP) process parameters for improving the wear behavior of Mg-3wt.% Zn-0.7 wt% Ca alloy. ECAP was conducted up to four passes via route Bc at 250 °C. Wear testing of both as-annealed (AA) and ECAP-processed alloys was performed using the dry ball-on-flat wear method under varying loads, speeds, and time. One pass (1P) and 4Bc-ECAP resulted in a notable uniform grain refinement of 86 % and 91 %, respectively, compared to the AA. X-ray diffraction (XRD) analysis confirmed a refined structure attributed to extensive dynamic recrystallization. Mechanical wear testing revealed a significant reduction in volume loss (VL), up to 56 % and 28.5 % after 1P and 4Bc samples, respectively, compared to the AA sample, supported by the observed texture intensity. The coefficient of friction (COF) stabilizes at 0.30-0.45, indicating low friction characteristics. Next, by adjusting wear load and speed through design of experiments (DOE), the wear output responses, VL and COF, were experimentally investigated. The output responses were predicted in the second step using ML, 3D response surface plots, and statistical analysis of variance (ANOVA). According to the regression model, the minimal VL was attained at a 5 N applied load. Also, the wear speed and VL at different passes are inversely proportional. On the other hand, the optimal COF was obtained at applied load about 2-3 N and 250 mm/s at different passes. The wear process variables were then optimized using different optimization techniques namely, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm (MOGA) approaches.

3.
Pain Ther ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977651

RESUMO

INTRODUCTION: Drawbacks of fixed-output spinal cord stimulation (SCS) screening trials may lead to compromised trial outcomes and poor predictability of long-term success. Evoked compound action potential (ECAP) dose-controlled closed-loop (CL) SCS allows objective confirmation of therapeutic neural activation and pulse-to-pulse stimulation adjustment. We report on the immediate patient-reported and neurophysiologic treatment response post-physiologic CL-SCS and feasibility of early SCS trial responder prediction. METHODS: Patient-reported pain relief, functional improvement, and willingness to proceed to permanent implant were compared between the day of the trial procedure (Day 0) and end of trial (EOT) for 132 participants in the ECAP Study undergoing a trial stimulation period. ECAP-based neurophysiologic measurements from Day 0 and EOT were compared between responder groups. RESULTS: A high positive predictive value (PPV) was achieved with 98.4% (60/61) of patients successful on the Day 0 evaluation also responding at EOT. The false-positive rate (FPR) was 5.6% (1/18). ECAP-based neurophysiologic measures were not different between patients who passed all Day 0 success criteria ("Day 0 successes") and those who did not ("needed longer to evaluate the therapy"). However, at EOT, responders had higher therapeutic usage and dose levels compared to non-responders. CONCLUSIONS: The high PPV and low FPR of the Day 0 evaluation provide confidence in predicting trial outcomes as early as the day of the procedure. Day 0 trials may be beneficial for reducing patient burden and complication rates associated with extended trials. ECAP dose-controlled CL-SCS therapy may provide objective data and rapid-onset pain relief to improve prognostic ability of SCS trials in predicting outcomes. TRIAL REGISTRATION: The ECAP Study is registered with ClinicalTrials.gov (NCT04319887).

4.
Bioengineering (Basel) ; 11(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927758

RESUMO

Hemodynamics in intracranial aneurysm strongly depends on the non-Newtonian blood behavior due to the large number of suspended cells and the ability of red blood cells to deform and aggregate. However, most numerical investigations on intracranial hemodynamics adopt the Newtonian hypothesis to model blood flow and predict aneurysm occlusion. The aim of this study was to analyze the effect of the blood rheological model on the hemodynamics of intracranial aneurysms in the presence or absence of endovascular treatment. A numerical investigation was performed under pulsatile flow conditions in a patient-specific aneurysm with and without the insertion of an appropriately reconstructed flow diverter stent (FDS). The numerical simulations were performed using Newtonian and non-Newtonian assumptions for blood rheology. In all cases, FDS placement reduced the intra-aneurysmal velocity and increased the relative residence time (RRT) on the aneurysmal wall, indicating progressive thrombus formation and aneurysm occlusion. However, the Newtonian model largely overestimated RRT values and consequent aneurysm healing with respect to the non-Newtonian models. Due to the non-Newtonian blood properties and the large discrepancy between Newtonian and non-Newtonian simulations, the Newtonian hypothesis should not be used in the study of the hemodynamics of intracranial aneurysm, especially in the presence of endovascular treatment.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38774957

RESUMO

OBJECTIVE: Cochlear implant (CI) electrode design has changed over time. Changes in intracochlear electrode design might influence the spread of neural activation along the auditory nerve and the number of independent channels. This study aimed to investigate the impact of intracochlear electrode design on the electrode-neuron interface using electrophysiological measures. STUDY DESIGN: Prospective cohort study. SETTING: A single tertiary hospital. METHODS: Fifty-two ears who were implanted with CI divided into 3 groups based on the design of intracochlear electrode arrays. Twenty-three ears were implanted with lateral wall straight electrodes. Eighteen ears were implanted with the slim perimodiolar electrode, and 11 ears were implanted with the old perimodiolar electrode. Various electrically-evoked compound action potential (ECAP) metrics were measured to quantify spread of excitation and channel interaction. RESULTS: ECAP threshold and slope were not significantly different among groups. ECAP spread of excitation (SOE) half-width and channel interaction index (CII) were significantly larger in subjects implanted with the lateral wall straight electrodes, indicating a wider spread of excitation compared to those with perimodiolar electrodes. Electrode impedance was significantly lower in subjects implanted with perimodiolar electrodes than those with lateral wall electrodes. CONCLUSION: Perimodiolar electrode groups yielded significantly narrower SOE half-widths and smaller CII than the lateral wall straight electrode group. This may indicate that the electrode array that hugged the modiolus had less overlap in neural excitation between adjacent electrodes, resulting in reduced channel interaction and potentially better spectral resolution than the electrode array positioned more laterally.

6.
Materials (Basel) ; 17(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612192

RESUMO

This study investigates the effects of zinc (4 wt.%) and severe plastic deformation on the mechanical properties of AZ61 magnesium alloy through the stir-casting process. Severe plastic deformation (Equal Channel Angular Pressing (ECAP)) has been performed followed by T4 heat treatment. The microstructural examinations revealed that the addition of 4 wt.% Zn enhances the uniform distribution of ß-phase, contributing to a more uniformly corroded surface in corrosive environments. Additionally, dynamic recrystallization (DRX) significantly reduces the grain size of as-cast alloys after undergoing ECAP. The attained mechanical properties demonstrate that after a single ECAP pass, AZ61 + 4 wt.% Zn alloy exhibits the highest yield strength (YS), ultimate compression strength (UCS), and hardness. This research highlights the promising potential of AZ61 + 4 wt.% Zn alloy for enhanced mechanical and corrosion-resistant properties, offering valuable insights for applications in diverse engineering fields.

7.
Eur Arch Otorhinolaryngol ; 281(8): 4001-4007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38551698

RESUMO

OBJECTIVES: Objective measurements to predict the position of a cochlear electrode during cochlear implantation surgery may serve to improve the surgical technique and postoperative speech outcome. There is evidence that electrically evoked compound action potentials (ECAP) are a suitable approach to provide information about the site of stimulation. This study aims to contribute to the knowledge about the association between the intraoperative intracochlear ECAP characteristics and the site of stimulation. METHODS: In a retrospective cohort study, patients undergoing cochlear implant surgery with flexible lateral wall electrode arrays (12 stimulating channels) between 2020 and 2022 were analyzed. The CDL was measured using a CT-based clinical planning software. ECAP were measured for all electrode contacts and associated to the CDL as well as to the site of stimulation in degree. RESULTS: Significant differences among the amplitudes and slopes for the individual stimulated electrode contacts at the stimulation sites of 90°, 180°, 270°, 360°, 450° and 540° were found. The values showed a trend for linearity among the single electrodes. CONCLUSIONS: ECAP characteristics correlate with the electrode's position inside the cochlea. In the future, ECAP may be applied to assess the intracochlear position inside the cochlea and support anatomy-based fitting.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Estudos Retrospectivos , Implante Coclear/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Criança , Potenciais de Ação/fisiologia , Idoso , Adolescente , Cóclea/fisiologia , Pré-Escolar , Estimulação Elétrica/métodos , Adulto Jovem , Potenciais Evocados Auditivos/fisiologia , Lactente
8.
Heliyon ; 10(4): e26400, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390184

RESUMO

The hexagonal close-packed (HCP) crystal structure of Mg alloys lead to poor formability as well as other undesirable mechanical behaviors in an otherwise highly sought-after alloy for commercial use. This study investigates the evolution of microstructure, texture, corrosion and mechanical behaviors in Mg-Zn-Mn (ZM31) alloy after processing using Equal Channel Angular Pressing (ECAP). Dynamic recrystallization was evident in the ECAP-processed samples, correlated with a substantial fiber structure, and resulted in the attainment of notable grain refinement and high lattice strain. Average grain sizes of 2.2 and 2 µm were achieved via 2 and 4-Pass Bc processing, respectively. This significant refinement yielded lower corrosion rates through enhancement of the thickness, coherency, and stability of formed protective oxide layers. The corrosion rate in the NaCl medium was substantially enhanced by 99.5% after four passes via route Bc. The recrystallized fine structure was found to have contributed to yield strength, ultimate strength, and microhardness improvements. Deformation enhanced yield and ultimate strengths by 132% and 64%, respectively. The distinctive grain refinement mechanism exhibited through the current ECAP procedure has potential to pave the way for novel and impactful utilizations of ZM31 in industries that demand exceptional mechanical and corrosion performance.

9.
J Assoc Res Otolaryngol ; 25(1): 63-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278970

RESUMO

PURPOSE: The hearing outcomes of cochlear implant users depend on the functional status of the electrode-neuron interface inside the cochlea. This can be assessed by measuring electrically evoked compound action potentials (eCAPs). Variations in cochlear neural health and survival are reflected in eCAP-based metrics. The difficulty in translating promising results from animal studies into clinical use has raised questions about to what degree eCAP-based metrics are influenced by non-neural factors. Here, we addressed these questions using a computational model. METHODS: A 2-D computational model was designed to simulate how electrical signals from the stimulating electrode reach the auditory nerve fibers distributed along the cochlea, evoking action potentials that can be recorded as compound responses at the recording electrodes. Effects of physiologically relevant variations in neural survival and in electrode-neuron and stimulating-recording electrode distances on eCAP amplitude growth functions (AGFs) were investigated. RESULTS: In line with existing literature, the predicted eCAP AGF slopes and the inter-phase gap (IPG) effects depended on the neural survival, but only when the IPG effect was calculated as the difference between the slopes of the two AGFs expressed in linear input-output scale. As expected, shallower eCAP AGF slopes were obtained for increased stimulating-recording electrode distance and larger eCAP thresholds for greater electrode-neuron distance. These non-neural factors had also minor interference on the predicted IPG effect. CONCLUSIONS: The model predictions demonstrate previously found dependencies of eCAP metrics on neural survival and non-neural aspects. The present findings confirm data from animal studies and provide insights into applying described metrics in clinical practice.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Cóclea , Nervo Coclear , Potenciais de Ação
10.
Biomater Adv ; 157: 213756, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211508

RESUMO

Commercial purity titanium (cp-Ti) is considered for replacing Ti64 as an implant material in various applications, due to the potential toxicity associated with the release of Al and V ions. However, the mechanical properties of cp-Ti, particularly fatigue resistance, are inadequate for this purpose. In this study, cp-Ti grade 4 rods were processed using a combination of equal channel angular pressing and rotary swaging (ECAP/RS). Tensile and fatigue tests were conducted, along with detailed microscopy and evaluation of corrosion resistance and biocompatibility. An average yield strength of 1383 MPa was obtained while maintaining moderate ductility of 10 %. This represents the highest strength ever recorded for cp-Ti, even exceeding that of Ti64. Additionally, fatigue endurance limit increased by 43 % up to 600 MPa, almost obtaining that of Ti64. Strengthening mechanisms were attributed to the ultrafine-grained (UFG) microstructure generated by ECAP/RS, along with strong crystallographic texture and formation of sub-grain structure. Furthermore, the corrosion resistance and biocompatibility of cp-Ti were largely unaffected, potentially easing regulatory transition in future medical devices. Thus, these results demonstrate high potential of combined ECAP/RS processing to manufacture UFG cp-Ti grade 4 materials that prospectively allow for the substitution of questionable alloys and downsizing of medical implants.


Assuntos
Próteses e Implantes , Titânio , Teste de Materiais , Propriedades de Superfície , Resistência à Tração
11.
Neuromodulation ; 27(2): 392-398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589643

RESUMO

OBJECTIVES: Sacral neuromodulation (SNM) therapy standard of care relies on visual-motor responses and patient-reported sensory responses in deciding optimized lead placement and programming. Automatic detection of stimulation responses could offer a simple, consistent indicator for optimizing SNM. The purpose of this study was to measure and characterize sacral evoked responses (SERs) resulting from sacral nerve stimulation using a commercial, tined SNM lead. MATERIALS AND METHODS: A custom external research system with stimulation and sensing hardware was connected to the percutaneous extension of an implanted lead during a staged (tined lead) evaluation for SNM. The system collected SER recordings across a range of prespecified stimulation settings (electrode configuration combinations for bipolar stimulation and bipolar sensing) during intraoperative and postoperative sessions in 21 subjects with overactive bladder (OAB) and nonobstructive urinary retention (NOUR). Motor and sensory thresholds were collected during the same sessions. RESULTS: SERs were detected in all 21 subjects. SER morphology (number of peaks, magnitude, and timing) varied across electrode configurations within and across subjects. Among subjects and electrode configurations tested, recordings contained SERs at motor threshold and/or sensory threshold in 75% to 80% of subjects. CONCLUSIONS: This study confirmed that implanted SNM leads can be used to directly record SERs elicited by stimulation in subjects with OAB and NOUR. SERs were readily detectable at typical SNM stimulation settings and procedural time points. Using these SERs as possible objective measures of SNM response has the capability to automate patient-specific SNM therapy, potentially providing consistent lead placement, programming, and/or closed-loop therapy.


Assuntos
Terapia por Estimulação Elétrica , Bexiga Urinária Hiperativa , Incontinência Urinária , Retenção Urinária , Humanos , Estudos de Viabilidade , Plexo Lombossacral/fisiologia , Bexiga Urinária Hiperativa/terapia , Incontinência Urinária/terapia , Terapia por Estimulação Elétrica/métodos , Retenção Urinária/etiologia , Retenção Urinária/terapia , Sacro/inervação , Resultado do Tratamento
12.
Materials (Basel) ; 16(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068162

RESUMO

In this paper, we present a complete characterization of the microstructural changes that occur in an LPBF AlSi10Mg alloy subjected to various post-processing methods, including equal-channel angular pressing (ECAP), KoBo extrusion, and multi-axial forging. Kikuchi transmission diffraction and transmission electron microscopy were used to examine the microstructures. Our findings revealed that multi-axis forging produced an extremely fine subgrain structure. KoBo extrusion resulted in a practically dislocation-free microstructure. ECAP processing at temperatures between 100 °C and 200 °C generated moderate grain refinement, with subgrain diameters averaging from 300 nm to 700 nm. The obtained data highlighted the potential of severe plastic deformation as a versatile method for tailoring the microstructure of the AlSi10Mg alloy. The ability to precisely control grain size and dislocation density using specific SPD methods allows for the development of novel materials with ultrafine-grained microstructures that offer the potential for enhanced mechanical and functional properties.

13.
Postepy Dermatol Alergol ; 40(5): 611-616, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38028409

RESUMO

Introduction: Specific immunoglobulins E (sIgE) are important parameters for the estimation of severity of allergic diseases. Aim: To determine the relationship between the concentration of specific IgE antibodies in serum and types of asthma. Material and methods: The concentration of sIgE antibodies against allergens Dermatophagoides pteronyssinus, cat dander, timothy grass, and Alternaria alternata were determined in the serum of 4077 respondents randomly selected from 8 regions (ECAP study). The positive results of sIgE (≥ 0.35 IU/ml or ≥ 0.7 IU/ml) were correlated to clinical diagnosis (types of asthma, skin-prick tests). Results: sIgE antibodies against any allergen were detected in 9.9% (classes 1-6)/7.6% (classes 2-6) of healthy respondents. Comparing sIgE antibodies of respondents with intermittent asthma to sIgE antibodies of respondents with persistent asthma, no statistically significant differences were identified. Relating to allergens of D. pteronyssinus, cat dander, and A. alternata, sIgE antibodies were more frequently detected in respondents with atopic asthma and a negative skin-prick test as compared to healthy respondents with a negative skin-prick test (p < 0.005 to p < 0.001). Relating to allergens of D. pteronyssinus, cat dander, and timothy grass, sIgE antibodies were more frequently detected in respondents with atopic asthma and a weakly positive skin-prick test as compared to healthy respondents with weakly positive skin-prick test (p < 0.05 to p < 0.001). Conclusions: Regarding subjects with a negative or weakly positive skin test, when sIgE antibodies to the same allergen are detected, asthma is much more likely to occur.

14.
Postepy Dermatol Alergol ; 40(5): 617-624, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38028415

RESUMO

Introduction: Specific immunoglobulins E (sIgE) are important parameters for the estimation of severity of allergic diseases. Aim: To determine the relationship between the concentration of specific IgE antibodies in serum and types of rhinitis. Material and methods: The concentration of sIgE antibodies against allergens Dermatophagoides pteronyssinus, cat dander, timothy grass, and Alternaria alternata were determined in the serum of 4077 respondents randomly selected from 8 regions (ECAP study). The positive results of sIgE (≥ 0.35 IU/ml or ≥ 0.7 IU/ml) were correlated to clinical diagnosis (types of rhinitis, skin-prick tests). Results: sIgE antibodies are more frequently detected in respondents with intermittent/seasonal allergic rhinitis and a negative skin-prick test as compared to healthy respondents with a negative skin-prick test (p < 0.05 to p < 0.001). Relating to allergens of D. pteronyssinus and cat dander, sIgE antibodies are more frequently detected in respondents with persistent/perennial allergic rhinitis and a negative or weakly positive skin-prick test as compared to healthy respondents with a negative or weakly positive skin-prick test (p < 0.05 to p < 0.001). Conclusions: The occurrence of intermittent/seasonal allergic rhinitis is much more probable in respondents with a negative skin-prick test, when IgE antibodies against the same allergen are detected. And the occurrence of persistent/perennial allergic rhinitis is much more probable in respondents with a negative or weakly positive skin-prick test with allergens of D. pteronyssinus or cat dander, when IgE antibodies against the same allergen are detected.

15.
Materials (Basel) ; 16(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834730

RESUMO

A supersaturated Al-4.8%Zn-1.2%Mg-0.14%Zr (wt%) alloy was processed by the equal-channel angular pressing (ECAP) technique at room temperature in order to obtain an ultrafine-grained (UFG) microstructure having an average grain size of about 260 nm. The hardness and microstructural characteristics, such as the phase composition and precipitations of this UFG microstructure were studied using depth-sensing indentation (DSI), transmission electron microscopy (TEM), as well as non-isothermal scanning of differential scanning calorimetry (DSC), and compared to the properties of the un-deformed sample. Emphasis was placed on the effect of the UFG microstructure on the subsequent thermal processes in DSC measurements. It has been shown that the ECAP process resulted in not only an ultrafine-grained but also a strongly precipitated microstructure, leading to a hardness (2115 MPa) two and a half times higher than the initial hardness of the freshly quenched sample. Because of the significant changes in microstructure, ECAP has also a strong effect on the dissolution (endothermic) and precipitation (exothermic) processes during DSC measurements, where the dissolution and precipitation processes were quantitatively characterized by using experimentally determined specific enthalpies, ΔH and activation energies, Q.

16.
Hear Res ; 439: 108895, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837701

RESUMO

The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.


Assuntos
Implantes Cocleares , Surdez , Cobaias , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Gânglio Espiral da Cóclea/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Nervo Coclear , Audição , Cóclea
17.
Materials (Basel) ; 16(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895635

RESUMO

Mg AZ80/91 alloys are highly popular due to their lightweight, high strength-to-weight ratio, and good machinability. However, their moderate mechanical properties and corrosion resistance have limited their use in the automotive, aerospace, and defense sectors. This study primarily aims to enhance the mechanical performance and corrosion resistance of Mg AZ80/91 alloys, making them more suitable for applications in the aerospace and automotive industries. Firstly, equal-channel angular pressing (ECAP) of Mg AZ80/91 alloys has been attempted to improve their mechanical properties. Secondly, a high-velocity oxy-fuel (HVOF) coating of SS316 was applied over the Mg AZ80/91 substrate to enhance its corrosion resistance. In the second step, an HVOF coating of SS316 is applied over the Mg AZ80/91 substrate for better corrosion resistance. The experimental findings demonstrate that the application of an SS316 coating on the ECAP-4P AZ80/91 Mg alloy substrate results in a uniform and dense layer with an average thickness of approximately 80 ± 5 µm. The HVOF-based SS316 coating on 4P-ECAP leads to a noteworthy enhancement in microhardness and a reduction in the corrosion rate, especially in a NaCl solution (3.5 wt.%). This improvement holds great promise for producing reliable, long-lasting, and resilient automotive, aerospace, and defense components. The application of an HVOF-based SS316 coating onto the AZ80 Mg alloy, which had not undergone ECAP treatment, led to a substantial enhancement in corrosion resistance. This resulted in a notable decrease in the corrosion current density, reducing it from 0.297 mA/cm2 to 0.10 µA/cm2.

18.
Biomimetics (Basel) ; 8(5)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37754159

RESUMO

The structure, phase composition, corrosion and mechanical properties, as well as aspects of biocompatibility in vitro and in vivo, of a Zn-1%Mg-0.1%Dy alloy after equal-channel angular pressing (ECAP) were studied. The structure refinement after ECAP leads to the formation of elongated α-Zn grains with a width of ~10 µm and of Mg- and Dy-containing phases. In addition, X-ray diffraction analysis demonstrated that ECAP resulted in the formation of the basal texture in the alloy. These changes in the microstructure and texture lead to an increase in ultimate tensile strength up to 262 ± 7 MPa and ductility up to 5.7 ± 0.2%. ECAP slows down the degradation process, apparently due to the formation of a more homogeneous microstructure. It was found that the alloy degradation rate in vivo after subcutaneous implantation in mice is significantly lower than in vitro ones. ECAP does not impair biocompatibility in vitro and in vivo of the Zn-1%Mg-0.1%Dy alloy. No signs of suppuration, allergic reactions, the formation of visible seals or skin ulcerations were observed after implantation of the alloy. This may indicate the absence of an acute reaction of the animal body to the Zn-1%Mg-0.1%Dy alloy in both states.

19.
J Mech Behav Biomed Mater ; 147: 106124, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717287

RESUMO

This study addresses the applicability of the ECAP-Conform process for the production of strengthened titanium to produce dental implants. For this purpose, the commercially pure titanium (CP-Ti) grade 2 was subjected to the ECAP-Conform process with a square cross-section die (at a temperature of 240 °C). This process improved the mechanical properties of CP-Ti grade 2 after one pass, such that both strength and hardness have increased by 35%. The functional properties of dental implants produced from the strengthened titanium and the as-received CP-Ti were compared. It was found that the average grain was reduced from 8.35 µm to 2.35 µm after one pass ECAP-Conform process (i.e. about 72% reduction in grain size). Also, the strength and energy absorption of CP-Ti dental implants made after one pass ECAP-Conform increased by 53% and 139%, respectively.

20.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630077

RESUMO

Pure titanium is limited to be used in biomedical applications due to its lower mechanical strength compared to its alloy counterpart. To enhance its properties and improve medical implants feasibility, advancements in titanium processing technologies are necessary. One such technique is equal-channel angular pressing (ECAP) for its severe plastic deformation (SPD). This study aims to surface modify commercially pure titanium using micro-arc oxidation (MAO) or plasma electrolytic oxidation (PEO) technologies, and mineral solutions containing Ca and P. The composition, metallography, and shape of the changed surface were characterized using X-ray diffraction (XRD), digital optical microscopy (OM), and scanning electron microscope (SEM), respectively. A microhardness test is conducted to assess each sample's mechanical strength. The weight % of Ca and P in the coating was determined using energy dispersive spectroscopy (EDS), and the corrosion resistance was evaluated through potentiodynamic measurement. The behavior of human dental pulp cell and periodontal cell behavior was also studied through a biomedical experiment over a period of 1-, 3-, and 7-days using culture medium, and the cell death and viability can be inferred with the help of enzyme-linked immunosorbent assay (ELISA) since it can detect proteins or biomarkers secreted by cells undergoing apoptosis or necrosis. This study shows that the mechanical grain refinement method and surface modification might improve the mechanical and biomechanical properties of commercially pure (CP) titanium. According to the results of the corrosion loss measurements, 2PassMAO had the lowest corrosion rate, which is determined to be 0.495 mmpy. The electrode potentials for the 1-pass and 2-pass coated samples are 1.44 V and 1.47 V, respectively. This suggests that the coating is highly effective in reducing the corrosion rate of the metallic CP Ti sample. Changes in the grain size and the presence of a high number of grain boundaries have a significant impact on the corrosion resistance of CP Ti. For ECAPED and surface-modified titanium samples in a 3.6% NaCl electrolyte solution, electrochemical impedance spectroscopy (EIS) properties are similar to Nyquist and Bode plot fitting. In light of ISO 10993-5 guidelines for assessing in vitro cytotoxicity, this study contributes valuable insights into pulp and periodontal cell behavior, focusing specifically on material cytotoxicity, a critical factor determined by a 30% decrease in cell viability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA