Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Ital J Pediatr ; 50(1): 112, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840186

RESUMO

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder that results in the abnormal development of structures derived from ectodermal tissue. This rare condition predominantly affects the hair, nails, eccrine glands, and teeth. While HED can be caused by various genes, the EDA, EDAR, EDARADD, and WNT10A genes account for approximately 90% of cases. Notably, HED forms associated with variants in the EDA, EDAR, or EDARADD genes may exhibit similar phenotypes due to defects in a common signaling pathway. Proper interaction among the products of these genes is crucial for the activation of the nuclear factor (NF-κB) signaling pathway, which subsequently regulates the transcription of targeted genes. The EDARADD gene, in particular, harbors one of the rarest reported variants associated with HED. CASE PRESENTATION: Five-and two-years-old brothers born into consanguineous parents were examined at our outpatient medical genetics clinic at Sanliurfa Training and Research Hospital, Turkey. Both displayed the same classical phenotypic features of HED. The elder had a very sparse dark and brittle hair, sparse eyebrows and eyelashes, conical upper and lower premolar teeth with hypodontia, widely spaced teeth, very dry skin, mildly prominent forehead, and periorbital wrinkles. The younger one showed the same, but less severe, clinical features. After thorough examination and patient history evaluation, targeted next-generation sequencing analysis yielded the novel homozygous insertion variant c.322_323insCGGGC p.(Arg108ProfsTer7) in EDARADD. The mutation has not been reported to date in the literature. CONCLUSIONS: In this report, we present two siblings exhibiting classical HED symptoms and a novel insertion variant of the EDARADD gene, which leads to a frameshift introducing a stop codon. Both brothers inherited such mutation from their parents, who were heterozygous carriers of the same variant. The present study may shed light about the pathogenic mechanisms underlying HED, and expand the spectrum of EDARADD gene variants associated with this condition.


Assuntos
Proteína de Domínio de Morte Associada a Edar , Mutação da Fase de Leitura , Humanos , Masculino , Proteína de Domínio de Morte Associada a Edar/genética , Pré-Escolar , Éxons , Homozigoto , Irmãos , Displasia Ectodérmica Anidrótica Tipo 1/genética
2.
Cancer Lett ; 577: 216427, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37838280

RESUMO

Tumor cell migration, specifically epithelial-mesenchymal transition (EMT), serves as a key contributor to treatment failure in colon cancer patients. However, the limited comprehension of its genetic and biological aspects presents challenges for its investigation. EDAR-associated death domain (EDARADD), an important TNFR superfamily member, is elevated in colon cancer. However, it remains unclear about the exact role of EDARADD in the progression of colon cancer metastasis. In this study, we initially demonstrated that both protein and mRNA levels of EDDARADD are elevated in colon cancer tissues and cells, associated with reduced overall survival. Furthermore, functional experiments demonstrated that EDARADD promotes colon cancer cell proliferation and participates in EMT both in vitro and vivo. Mechanistically, Co-IP verified EDARADD could stabilize Snail1 by interacting with E3 ubiquitin ligase Trim21 to inhibit ubiquitination of Snail1. Interestingly, RNA-seq and ubiquitination assay revealed EDARADD's dual downregulation of Trim21 expression at the translational level via Cul1-mediated ubiquitin degradation, and at the transcriptional level through PPARa regulation. Moreover, EDARADD activates NF-κB signaling and experiences feedback transcriptional regulation by p65. In conclusion, this study highlights the signal pathway of EDARADD-PPARa-Trim21-Snail1-EMT and a feedback regulation of NF-κB signaling on EDARADD, which indicated EDARADD as an emerging therapeutic target for colon cancer.


Assuntos
Neoplasias do Colo , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Ubiquitinação , Neoplasias do Colo/genética , Transição Epitelial-Mesenquimal/genética , Proteína de Domínio de Morte Associada a Edar/genética , Proteína de Domínio de Morte Associada a Edar/metabolismo
3.
Genes Genet Syst ; 98(4): 171-178, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37673591

RESUMO

Ectodermal dysplasia (ED), which exhibits a wide range of clinical symptoms, may be classified into three major types: hypohidrotic, anhidrotic, and hidrotic. A male child (proband) showing anhidrotic dysplasia was used as the subject of this study. The biopsy of the big toe revealed that the male child had no sweat glands. Genetic analysis of the patient revealed a mutation caused by a homozygous nucleotide substitution in the EDAR-associated death domain (EDARADD) (rs114632254) gene c.439G>A (p.Gly147Arg). Phenotypically, his teeth were sharp, but eight teeth were missing (oligodontia). The patient had normal nails with dry skin, sparse hair, everted lower lip vermilion, hyperpigmented eyelids, and abnormal nasal bridge morphology around the eyes. There is also a homozygous dominant (healthy) female and a heterozygous male in this family, who are cousins (aunt children) to the heterozygous parents. The daughter of the patient was also heterozygous. This mutation represents homozygous recessive inheritance, which we describe for the first time. Furthermore, we demonstrated that this genetic disorder can be readily diagnosed using the restriction fragment length polymorphism (RFLP) method after digestion with MnII restriction endonuclease.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Criança , Humanos , Masculino , Feminino , Polimorfismo de Fragmento de Restrição , Domínio de Morte , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/patologia , Displasia Ectodérmica/genética , Mutação , Receptores da Ectodisplasina/genética
4.
J Dermatol ; 50(10): 1357-1362, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37269152

RESUMO

Pathogenic variants in the EDARADD gene result in autosomal recessive and autosomal dominant ectodermal dysplasia. This article reports on the fourth family in the world with ectodermal dysplasia 11A (ECTD11A) cause from a novel splicing variant in the EDARADD gene, identified by whole exome sequencing and confirmed by Sanger sequencing. The proband and his mother were heterozygous for the detected variant (NM_145861.4:c.161-2A>T). The proband manifests unusual symptoms including hyperkeratotic plaques, slow-growing hair, recurrent infection, and pectus excavatum. His mother presents hypohidrosis, extensive tooth decay, fragile nails, and sparse hair. Further studies on ECTD11A patients could be useful to characterizing the phenotype features more precisely.


Assuntos
Displasia Ectodérmica , Receptor Edar , Feminino , Humanos , Receptor Edar/genética , Receptor Edar/metabolismo , Linhagem , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Fenótipo , Mães , Proteína de Domínio de Morte Associada a Edar/genética
5.
Front Genet ; 14: 1168538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077539

RESUMO

Non-syndromic tooth agenesis (NSTA) is one of the most common dental developmental malformations affected by genetic factors predominantly. Among all 36 candidate genes reported in NSTA individuals, EDA, EDAR, and EDARADD play essential roles in ectodermal organ development. As members of the EDA/EDAR/NF-κB signaling pathway, mutations in these genes have been implicated in the pathogenesis of NSTA, as well as hypohidrotic ectodermal dysplasia (HED), a rare genetic disorder that affects multiple ectodermal structures, including teeth. This review provides an overview of the current knowledge on the genetic basis of NSTA, with a focus on the pathogenic effects of the EDA/EDAR/NF-κB signaling pathway and the role of EDA, EDAR, and EDARADD mutations in developmental tooth defects. We also discuss the phenotypic overlap and genetic differences between NSTA and HED. Ultimately, this review highlights the importance of genetic analysis in diagnosing and managing NSTA and related ectodermal disorders, and the need for ongoing research to improve our understanding of these conditions.

6.
J Dermatol ; 50(3): 349-356, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36258277

RESUMO

Hypohidrotic ectodermal dysplasia is a rare condition characterized by hypohidrosis, hypodontia, and hypotrichosis. The disease can show X-linked recessive, autosomal dominant or autosomal recessive inheritance trait. Of these, the autosomal forms are caused by mutations in either EDAR or EDARADD. To date, the underlying pathomechanisms or genotype-phenotype correlations for autosomal forms have not completely been disclosed. In this study, we performed a series of in vitro studies for four missense mutations in the death domain of EDAR protein: p.R358Q, p.G382S, p.I388T, and p.T403M. The results revealed that p.R358Q- and p.T403M-mutant EDAR showed different expression patterns from wild-type EDAR in both western blots and immunostainings. NF-κB reporter assays demonstrated that all the mutant EDAR showed reduced activation of NF-κB, but the reduction by p.G382S- and p.I388T-mutant EDAR was moderate. Co-immunoprecipitation assays showed that p.R358Q- and p.T403M-mutant EDAR did not bind with EDARADD at all, whereas p.G382S- and p.I388T-mutant EDAR maintained the affinity to some extent. Furthermore, we demonstrated that all the mutant EDAR proteins analyzed aberrantly bound with TRAF6. Sum of the data suggest that the degree of loss-of-function is different among the mutant EDAR proteins, which may be associated with the severity of the disease.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Humanos , Mutação de Sentido Incorreto , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor Edar/genética , Receptor Edar/metabolismo , Displasia Ectodérmica/genética , Mutação
8.
Urol Oncol ; 40(8): 382.e15-382.e24, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35637063

RESUMO

PURPOSE: Bladder cancer is a kind of common malignant cancer in the urinary system. The expression of EDARADD (ectodysplasin-A receptor-associated death domain) in bladder cancer is higher than the normal samples. However, its role in bladder cancer remains unknown. In the present study, we analyzed the expression of EDARADD in 81 bladder cancer samples by immunohistochemistry as well as its correlation with clinical characteristics. In addition, the role of EDARADD was also explored through loss of function. MATERIALS AND METHODS: Cell proliferation assay and MTT assay were conducted to assess the proliferation of bladder cancer cells and transwell assay and wound healing assay were conducted to assess the migration of bladder cancer cells. On the other hand, the levels of epithelial-mesenchymal transition (EMT) associated proteins and the key molecules in the MAPK signaling pathway were detected by western blot. In vivo experiments were also conducted to determine the effect of EDARADD silencing on the metastasis of bladder cancer cells and the MAPK signaling pathway. RESULTS: EDARADD was highly expressed in bladder cancer samples, especially in high-grade bladder cancer samples. The high EDARADD level indicated a poor survival. Interestingly, EDARADD silencing suppressed the proliferation, migration and EMT of bladder cancer cells. Furthermore, the MAPK signaling pathway was repressed by EDARADD silencing. Additionally, silencing EDARADD also inhibited the metastasis of bladder cancer and the MAPK signaling pathway in vivo. It is indicated that silencing EDARADD may suppress the proliferation and metastasis of bladder cancer cells through the MAPK signaling pathway. CONCLUSION: These results indicate that EDARADD may become a probable target for the treatment of bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína de Domínio de Morte Associada a Edar/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Neoplasias da Bexiga Urinária/patologia
9.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107126

RESUMO

In mice, rats, dogs and humans, the growth and function of sebaceous glands and eyelid Meibomian glands depend on the ectodysplasin signalling pathway. Mutation of genes encoding the ligand EDA, its transmembrane receptor EDAR and the intracellular signal transducer EDARADD leads to hypohidrotic ectodermal dysplasia, characterised by impaired development of teeth and hair, as well as cutaneous glands. The rodent ear canal has a large auditory sebaceous gland, the Zymbal's gland, the function of which in the health of the ear canal has not been determined. We report that EDA-deficient mice, EDAR-deficient mice and EDARADD-deficient rats have Zymbal's gland hypoplasia. EdaTa mice have 25% prevalence of otitis externa at postnatal day 21 and treatment with agonist anti-EDAR antibodies rescues Zymbal's glands. The aetiopathogenesis of otitis externa involves infection with Gram-positive cocci, and dosing pregnant and lactating EdaTa females and pups with enrofloxacin reduces the prevalence of otitis externa. We infer that the deficit of sebum is the principal factor in predisposition to bacterial infection, and the EdaTa mouse is a potentially useful microbial challenge model for human acute otitis externa.


Assuntos
Meato Acústico Externo , Displasia Ectodérmica Anidrótica Tipo 1 , Otite Externa , Animais , Ectodisplasinas , Feminino , Lactação , Camundongos
10.
Genes (Basel) ; 12(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34573371

RESUMO

Ectodermal dysplasia (ED) is a diverse group of genetic disorders caused by congenital defects of two or more ectodermal-derived body structures, namely, hair, teeth, nails, and some glands, e.g., sweat glands. Molecular pathogenesis of ED involves mutations of genes encoding key proteins of major developmental pathways, including ectodysplasin (EDA) and wingless-type (WNT) pathways. The most common ED phenotype is hypohidrotic/anhidrotic ectodermal dysplasia (HED) featuring hypotrichosis, hypohidrosis/anhidrosis, and hypodontia. Molecular diagnosis is fundamental for disease management and emerging treatments. We used targeted next generation sequencing to study EDA, EDAR, EDARADD, and WNT10A genes in 45 Egyptian ED patients with or without hypohidrosis. We present genotype and phenotype data of 28 molecularly-characterized patients demonstrating genetic heterogeneity, variable expressivity, and intrafamilial phenotypic variability. Thirteen mutations were reported, including four novel EDA mutations, two novel EDARADD, and one novel EDAR mutations. Identified mutations congregated in exons encoding key functional domains. EDA is the most common gene contributing to 85% of the identified Egyptian ED genetic spectrum, followed by EDARADD (10%) and EDAR (5%). Our cohort represents the first and largest cohort from North Africa where more than 60% of ED patients were identified emphasizing the need for exome sequencing to explore unidentified cases.


Assuntos
Displasia Ectodérmica/genética , Ectodisplasinas/genética , Receptor Edar/genética , Proteína de Domínio de Morte Associada a Edar/genética , Mutação , Adulto , Criança , Pré-Escolar , Displasia Ectodérmica/etiologia , Egito , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Wnt/genética
11.
J Dermatol ; 48(10): 1533-1541, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34219261

RESUMO

Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder characterized by hypohidrosis, hypodontia, and hypotrichosis. Autosomal forms of the disease are caused by mutations in either EDAR or EDARADD. To date, the underlying pathomechanisms for HED resulting from EDARADD mutations have not fully been disclosed. In this study, we performed detailed in vitro analyses in order to characterize three dominantly inherited missense mutations, p.D120Y, p.L122R, and p.D123N, and one recessively inherited missense mutation, p.E152K, in the EDARADD gene. Nuclear factor (NF)-κB reporter assays demonstrated that all the mutant EDARADD showed reduction in activation of NF-κB. Importantly, p.D120Y-, p.L122R-, and p.D123N-mutant EDARADD slightly reduced the NF-κB activity induced by wild-type EDARADD in a dominant negative manner. Co-immunoprecipitation assays showed that all of the mutant EDARADD were capable of binding to EDAR and wild-type EDARADD. Additional co-immunoprecipitation assays revealed that p.D120Y-, p.L122R-, and p.D123N-mutant EDARADD markedly prevented the interaction between EDAR and wild-type EDARADD, which further indicated a dominant negative effect by these mutations. Finally, we found that p.D120Y-, p.L122R-, and p.D123N-mutant EDARADD completely lost the ability to bind with TRAF6, while p.E152K-mutant EDARADD showed a mild reduction in the affinity. Our findings will provide crucial information toward unraveling the molecular mechanisms how EDARADD gene mutations cause the disease.


Assuntos
Anodontia , Displasia Ectodérmica Anidrótica Tipo 1 , Proteína de Domínio de Morte Associada a Edar , Hipo-Hidrose , Deformidades Congênitas dos Membros , Ectodisplasinas , Proteína de Domínio de Morte Associada a Edar/genética , Humanos , Mutação
12.
Orphanet J Rare Dis ; 14(1): 281, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796081

RESUMO

BACKGROUND: Ectodermal dysplasias (ED) are a group of genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives. An attenuated phenotype is considered a non-syndromic trait when the patient is affected by only one impaired ectodermal structure, such as in non-syndromic tooth agenesis (NSTA) disorder. Hypohidrotic ectodermal dysplasia (HED) is the most highly represented ED. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common subtype, with an incidence of 1/50,000-100,000 males, and is associated with the EDA gene (Xq12-q13.1); the dominant and recessive subtypes involve the EDAR (2q13) and EDARADD (1q42.3) genes, respectively. The WNT10A gene (2q35) is associated more frequently with NSTA. Our goal was to determine the mutational spectrum in a cohort of 72 Spanish patients affected by one or more ectodermal derivative impairments referred to as HED (63/72) or NSTA (9 /72) to establish the prevalence of the allelic variants of the four most frequently associated genes. Sanger sequencing of the EDA, EDAR, EDARADD and WNT10A genes and multiplex ligation-dependent probe amplification (MLPA) were performed. RESULTS: A total of 61 children and 11 adults, comprising 50 males and 22 females, were included. The average ages were 5.4 and 40.2 years for children and adults, respectively. A molecular basis was identified in 51/72 patients, including 47/63 HED patients, for whom EDA was the most frequently involved gene, and 4/9 NSTA patients, most of whom had variants of WNT10A. Among all the patients, 37/51 had variants of EDA, 8/51 had variants of the WNT10A gene, 4/51 had variants of EDAR and 5/51 had variants of EDARADD. In 42/51 of cases, the variants were inherited according to an X-linked pattern (27/42), with the remaining showing an autosomal dominant (10/42) or autosomal recessive (5/42) pattern. Among the NSTA patients, 3/9 carried pathogenic variants of WNT10A and 1/9 carried EDA variants. A total of 60 variants were detected in 51 patients, 46 of which were different, and out of these 46 variants, 12 were novel. CONCLUSIONS: This is the only molecular study conducted to date in the Spanish population affected by ED. The EDA, EDAR, EDARADD and WNT10A genes constitute the molecular basis in 70.8% of patients with a 74.6% yield in HED and 44.4% in NSTA. Twelve novel variants were identified. The WNT10A gene has been confirmed as the second molecular candidate that has been identified and accounts for one-half of non-EDA patients and one-third of NSTA patients. Further studies using next generation sequencing (NGS) will help to identify other contributory genes in the remaining uncharacterized Spanish patients.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica/genética , Receptor Edar/genética , Proteína de Domínio de Morte Associada a Edar/genética , Proteínas Wnt/genética , Adolescente , Adulto , Anodontia/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Éxons/genética , Feminino , Humanos , Lactente , Recém-Nascido , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Espanha , Adulto Jovem
13.
Cytogenet Genome Res ; 157(4): 189-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30974434

RESUMO

Hypohidrotic or anhidrotic ectodermal dysplasia (HED/EDA) is characterized by impaired development of the hair, teeth, or sweat glands. HED/EDA is inherited in an X-linked, autosomal dominant, or autosomal recessive pattern and caused by the pathogenic variants in 4 genes: EDA, EDAR, EDARADD, and WNT10A. The aim of the present study was to perform molecular screening of these 4 genes in a cohort of Turkish individuals diagnosed with HED/EDA. We screened for pathogenic variants of WNT10A, EDA, EDAR, and EDARADD through Sanger sequencing. We further assessed the clinical profiles of the affected individuals in order to establish phenotype-genotype correlation. In 17 (63%) out of 27 families, 17 pathogenic variants, 8 being novel, were detected in the 4 well-known ectodermal dysplasia genes. EDAR and EDA variants were identified in 6 families each, WNT10A variants in 4, and an EDARADD variant in 1, accounting for 35.3, 35.3, 23.5, and 5.9% of mutation-positive families, respectively. The low mutation detection rate of the cohort and the number of the EDAR pathogenic variants being as high as the EDA ones were the most noteworthy findings which could be attributed to the high consanguinity rate.


Assuntos
Displasia Ectodérmica/genética , Ectodisplasinas/genética , Receptor Edar/genética , Proteína de Domínio de Morte Associada a Edar/genética , Mutação , Análise de Sequência de DNA/métodos , Proteínas Wnt/genética , Consanguinidade , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Turquia
14.
Dis Model Mech ; 12(4)2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31028034

RESUMO

Patients with mutations in the ectodysplasin receptor signalling pathway genes - the X-linked ligand ectodysplasin-A (EDA), the receptor EDAR or the receptor adapter EDARADD - have hypohidrotic ectodermal dysplasia (HED). In addition to having impaired development of teeth, hair, eccrine sweat glands, and salivary and mammary glands, HED patients have ear, nose and throat disease. The mouse strains Tabby (EdaTa ) and downless (Edardl-J/dl-J ) have rhinitis and otitis media due to loss of submucosal glands in the upper airway. We report that prenatal correction of EDAR signalling in EdaTa mice with the agonist anti-EDAR antibody rescues the auditory-tube submucosal glands and prevents otitis media, rhinitis and nasopharyngitis. The sparse- and wavy-haired (swh) rat strain carries a mutation in the Edaradd gene and has similar cutaneous HED phenotypes to mouse models. We report that auditory-tube submucosal glands are smaller in the homozygous mutant Edaraddswh/swh than those in unaffected heterozygous Edaraddswh/+ rats, and that this predisposes them to otitis media. Furthermore, the pathogenesis of otitis media in the rat HED model differs from that in mice, as otitis media is the primary pathology, and rhinitis is a later-onset phenotype. These findings in rodent HED models imply that hypomorphic as well as null mutations in EDAR signalling pathway genes may predispose to otitis media in humans. In addition, this work suggests that the recent successful prenatal treatment of X-linked HED (XLHED) in humans may also prevent ear, nose and throat disease, and provides diagnostic criteria that distinguish HED-associated otitis media from chronic otitis media with effusion, which is common in children.


Assuntos
Orelha Média/metabolismo , Orelha Média/patologia , Displasia Ectodérmica Anidrótica Tipo 1/metabolismo , Displasia Ectodérmica Anidrótica Tipo 1/patologia , Ectodisplasinas/metabolismo , Nariz/patologia , Transdução de Sinais , Animais , Anticorpos/farmacologia , Modelos Animais de Doenças , Feminino , Hialina/metabolismo , Masculino , Camundongos , Nasofaringite/complicações , Nasofaringite/patologia , Nasofaringe/efeitos dos fármacos , Nasofaringe/patologia , Otite Média/complicações , Otite Média/patologia , Fenótipo , Ratos , Receptores da Ectodisplasina/agonistas , Receptores da Ectodisplasina/metabolismo , Rinite/complicações
15.
Genes (Basel) ; 7(9)2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27657131

RESUMO

Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

16.
Am J Med Genet A ; 170A(1): 249-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26440664

RESUMO

Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1/genética , Receptor Edar/genética , Proteína de Domínio de Morte Associada a Edar/genética , Mutação de Sentido Incorreto/genética , Neoplasias Ovarianas/genética , Teratoma/genética , Adolescente , Doenças Mamárias/genética , Receptor Edar/metabolismo , Proteína de Domínio de Morte Associada a Edar/metabolismo , Feminino , Cabelo/crescimento & desenvolvimento , Humanos , Masculino , NF-kappa B/metabolismo , Neoplasias Ovarianas/patologia , Linhagem , Transdução de Sinais/genética , Teratoma/patologia
17.
Semin Immunol ; 26(3): 220-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24928340

RESUMO

Ectodysplasin (Eda) is the most studied tumor necrosis ligand in the field of developmental biology. In all vertebrates studied so far, inactivating germline mutations in Eda lead to the genetic disease called hypohidrotic ectodermal dysplasia (HED). In humans, HED is a life-threatening condition in particular in infants due to absent or severely reduced sweating leading to hyperthermia. HED is also characterized by sparse hair, and oligo- or anodontia. Research of the Eda pathway has not only increased our knowledge on ectodermal appendage development and etiology of developmental disorders, but also on evolution of several vertebrate species including humankind. Studies on mouse and dog models of HED has led to one of the most stunning breakthroughs in applied developmental biology research by showing that a short-term treatment of neonates with a synthetic ligand corrects many of the HED-associated traits. Eighteen years after the identification of EDA as the causative gene in HED, a phase II trial aiming at permanent correction of the disease is now ongoing. This review summarizes the latest discoveries in the Eda field and points to areas that need further investigation such as the possible involvement of Eda in cell migration, stem cell maintenance, or cancer.


Assuntos
Ectodisplasinas/metabolismo , Receptor Edar/metabolismo , Animais , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/metabolismo , Ectodisplasinas/genética , Humanos , Transdução de Sinais
18.
J Dent Res ; 93(7): 626-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24810274

RESUMO

The first genome-wide association study of dental caries focused on primary teeth in children aged 3 to 12 yr and nominated several novel genes: ACTN2, EDARADD, EPHA7, LPO, MPPED2, MTR, and ZMPSTE24. Here we interrogated 156 single-nucleotide polymorphisms (SNPs) within these candidate genes for evidence of association with dental caries experience in 13 race- and age-stratified samples from 6 independent studies (n = 3600). Analysis was performed separately for each sample, and results were combined across samples via meta-analysis. MPPED2 was significantly associated with caries via meta-analysis across the 5 childhood samples, with 4 SNPs showing significant associations after gene-wise adjustment for multiple comparisons (p < .0026). These results corroborate the previous genome-wide association study, although the functional role of MPPED2 in caries etiology remains unknown. ACTN2 also showed significant association via meta-analysis across childhood samples (p = .0014). Moreover, in adults, genetic association was observed for ACTN2 SNPs in individual samples (p < .0025), but no single SNP was significant via meta-analysis across all 8 adult samples. Given its compelling biological role in organizing ameloblasts during amelogenesis, this study strengthens the hypothesis that ACTN2 influences caries risk. Results for the other candidate genes neither proved nor precluded their associations with dental caries.


Assuntos
Actinina/genética , Cárie Dentária/genética , Diester Fosfórico Hidrolases/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Adolescente , Adulto , Negro ou Afro-Americano/genética , Amelogênese/genética , Criança , Pré-Escolar , Proteína de Domínio de Morte Associada a Edar/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lipoproteínas/genética , Masculino , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Receptor EphA7/genética , População Branca/genética , Adulto Jovem
19.
Pharmacol Ther ; 140(2): 186-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23845861

RESUMO

Death receptors are members of the tumour necrosis factor (TNF) receptor superfamily characterised by an ~80 amino acid long alpha-helical fold, termed the death domain (DD). Death receptors diversified during early vertebrate evolution indicating that the DD fold has plasticity and specificity that can be easily adjusted to attain additional functions. Eight members of the death receptor family have been identified in humans, which can be divided into four structurally homologous groups or clades, namely: the p75(NTR) clade (consisting of ectodysplasin A receptor, death receptor 6 (DR6) and p75 neurotrophin (NTR) receptor); the tumour necrosis factor receptor 1 clade (TNFR1 and DR3), the CD95 clade (CD95/FAS) and the TNF-related apoptosis-inducing ligand receptor (TRAILR) clade (TRAILR1 and TRAILR2). Receptors in the same clade participate in similar processes indicating that structural diversification enabled functional specialisation. On the surface of nearly all human cells multiple death receptors are expressed, enabling the cell to respond to a plethora of external signals. Activation of different death receptors converges on the activation of three main signal transduction pathways: nuclear factor-κB-mediated differentiation or inflammation, mitogen-associated protein kinase-mediated stress response and caspase-mediated apoptosis. While the ability to induce cell death is true for nearly all DRs, the FAS and TRAILR clades have specialised in inducing cell death. Here we summarise recent discoveries about the molecular regulation and structural requirements of apoptosis induction by death receptors and discuss how this information can be used to better explain the biological functions, similarities and distinguishing features of death receptors.


Assuntos
Apoptose/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Receptores de Morte Celular/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA