Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phytomedicine ; 126: 155200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387273

RESUMO

BACKGROUND: The renin-angiotensin-aldosterone system (RAAS) over-activation is highly involved in cardiovascular diseases (CVDs), with the Gαq-PLCß3 axis acting as a core node of RAAS. PLCß3 is a potential target of CVDs, and the lack of inhibitors has limited its drug development. PURPOSE: Sinapine (SP) is a potential leading compound for treating CVDs. Thus, we aimed to elucidate the regulation of SP towards the Gαq-PLCß3 axis and its molecular mechanism. STUDY DESIGN: Aldosteronism and hypertension animal models were employed to investigate SP's inhibitory effect on the abnormal activation of the RAAS through the Gαq-PLCß3 axis. We used chemical biology methods to identify potential targets and elucidate the underlying molecular mechanisms. METHODS: The effects of SP on aldosteronism and hypertension were evaluated using an established animal model in our laboratory. Target identification and underlying molecular mechanism research were performed using activity-based protein profiling with a bio-orthogonal click chemistry reaction and other biochemical methods. RESULTS: SP alleviated aldosteronism and hypertension in animal models by targeting PLCß3. The underlying mechanism for blocking the Gαq-PLCß3 interaction involves targeting the EF hands through the Asn-260 amino acid residue. SP regulated the Gαq-PLCß3 axis more precisely than the Gαq-GEFT or Gαq-PKCζ axis in the cardiovascular system. CONCLUSION: SP alleviated RAAS over-activation via Gαq-PLCß3 interaction blockade by targeting the PLCß3 EF hands domain, which provided a novel PLC inhibitor for treating CVDs. Unlike selective Gαq inhibitors, SP reduced the risk of side effects compared to Gαq inhibitors in treating CVDs.


Assuntos
Doenças Cardiovasculares , Colina/análogos & derivados , Hiperaldosteronismo , Hipertensão , Animais , Doenças Cardiovasculares/tratamento farmacológico , Motivos EF Hand , Hipertensão/tratamento farmacológico
2.
IUCrJ ; 10(Pt 2): 233-245, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862489

RESUMO

EF-hand proteins, which contain a Ca2+-binding EF-hand motif, are involved in regulating diverse cellular functions. Ca2+ binding induces conformational changes that modulate the activities of EF-hand proteins. Moreover, these proteins occasionally modify their activities by coordinating metals other than Ca2+, including Mg2+, Pb2+ and Zn2+, within their EF-hands. EFhd1 and EFhd2 are homologous EF-hand proteins with similar structures. Although separately localized within cells, both are actin-binding proteins that modulate F-actin rearrangement through Ca2+-independent actin-binding and Ca2+-dependent actin-bundling activity. Although Ca2+ is known to affect the activities of EFhd1 and EFhd2, it is not known whether their actin-related activities are affected by other metals. Here, the crystal structures of the EFhd1 and EFhd2 core domains coordinating Zn2+ ions within their EF-hands are reported. The presence of Zn2+ within EFhd1 and EFhd2 was confirmed by analyzing anomalous signals and the difference between anomalous signals using data collected at the peak positions as well as low-energy remote positions at the Zn K-edge. EFhd1 and EFhd2 were also found to exhibit Zn2+-independent actin-binding and Zn2+-dependent actin-bundling activity. This suggests the actin-related activities of EFhd1 and EFhd2 could be regulated by Zn2+ as well as Ca2+.


Assuntos
Citoesqueleto de Actina , Actinas , Motivos EF Hand , Proteínas dos Microfilamentos , Zinco
3.
Metallomics ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657675

RESUMO

Abiogenic metals Pb and Hg are highly toxic since chronic and/or acute exposure often leads to severe neuropathologies. Mn2+ is an essential metal ion but in excess can impair neuronal function. In this study, we address in vitro the interactions between neuronal calcium sensor 1 (NCS1) and divalent cations. Results showed that non-physiological ions (Pb2+ and Mn2+) bind to EF-hands in NCS1 with nanomolar affinity and lower equilibrium dissociation constant than the physiological Ca2+ ion. (Kd, Pb2+ = 7.0 ± 1.0 nM; Kd, Mn2+ = 34.0 ± 6.0 nM; K). Native ultra-high resolution mass spectrometry (FT-ICR MS) and trapped ion mobility spectrometry-mass spectrometry (nESI-TIMS-MS) studies provided the NCS1-metal complex compositions-up to four Ca2+ or Mn2+ ions and three Pb2+ ions (M⋅Pb1-3Ca1-3, M⋅Mn1-4Ca1-2, and M⋅Ca1-4) were observed in complex-and similarity across the mobility profiles suggests that the overall native structure is preserved regardless of the number and type of cations. However, the non-physiological metal ions (Pb2+, Mn2+, and Hg2+) binding to NCS1 leads to more efficient quenching of Trp emission and a decrease in W30 and W103 solvent exposure compared to the apo and Ca2+ bound form, although the secondary structural rearrangement and exposure of hydrophobic sites are analogous to those for Ca2+ bound protein. Only Pb2+ and Hg2+ binding to EF-hands leads to the NCS1 dimerization whereas Mn2+ bound NCS1 remains in the monomeric form, suggesting that other factors in addition to metal ion coordination, are required for protein dimerization.


Assuntos
Cálcio , Chumbo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Manganês/metabolismo , Proteínas Sensoras de Cálcio Neuronal , Neuropeptídeos
4.
Methods Enzymol ; 651: 103-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888201

RESUMO

The variety of magnetic properties exhibited by paramagnetic lanthanoids provides outstanding information in NMR-based structural biology and therefore can be a very useful tool for characterizing lanthanoid-binding proteins. Because of their dependence on the relative positions of the protein nuclei and of the lanthanoid ion, the paramagnetic restraints (PCS, PRDC and PRE) provide information on structure and dynamics of proteins. In this Chapter, we cover the use of lanthanoids in structural biology including protein sample preparation, NMR experiments and data interpretation.


Assuntos
Elementos da Série dos Lantanídeos , Proteínas de Transporte , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas/metabolismo
5.
ACS Chem Neurosci ; 11(17): 2543-2548, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786300

RESUMO

Lithium has been used for the treatment of mood disorders for decades though the molecular mechanism of its therapeutic action and intracellular targets remain furtive. We report that neurotropic agent Li+ binds to the neuronal calcium sensor, Downstream Regulatory Element Antagonist Modulator (DREAM), with an equilibrium dissociation constant of 34 ± 4 µM and impacts DREAM structural and dynamic properties in a similar manner as observed for its physiological ligand, Ca2+. Results of fluorescence spectroscopy and molecular dynamics are consistent with Li+ binding at EF-hands. In the Li+ bound form, DREAM association to peptides mimicking DREAM binding sites in a voltage-gated potassium channel is enhanced compared to the apoprotein, whereas DREAM affinity for the presenilin binding site, helix-9, is impeded. These results suggest that DREAM and possibly other members of the neuronal calcium sensor family belong to Li+ intracellular targets and interactions between Li+ and NCS provide a molecular basis for Li+ neuroprotective action.


Assuntos
Cálcio , Proteínas Interatuantes com Canais de Kv , Sítios de Ligação , Cálcio/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Lítio , Ligação Proteica
6.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054133

RESUMO

Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/química , Proteínas de Ligação a Calmodulina/química , Dictyostelium/química , Motivos EF Hand , Humanos , Modelos Moleculares , Ligação Proteica , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/química
7.
FEBS J ; 287(12): 2486-2503, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31785178

RESUMO

It is now accepted that reactive oxygen species (ROS) are not only dangerous oxidative agents but also chemical mediators of the redox cell signaling and innate immune response. A central role in ROS-controlled production is played by the NADPH oxidases (NOXs), a group of seven membrane-bound enzymes (NOX1-5 and DUOX1-2) whose unique function is to produce ROS. Here, we describe the regulation of NOX5, a widespread family member present in cyanobacteria, protists, plants, fungi, and the animal kingdom. We show that the calmodulin-like regulatory EF-domain of NOX5 is partially unfolded and detached from the rest of the protein in the absence of calcium. In the presence of calcium, the C-terminal lobe of the EF-domain acquires an ordered and more compact structure that enables its binding to the enzyme dehydrogenase (DH) domain. Our spectroscopic and mutagenesis studies further identified a set of conserved aspartate residues in the DH domain that are essential for NOX5 activation. Altogether, our work shows that calcium induces an unfolded-to-folded transition of the EF-domain that promotes direct interaction with a conserved regulatory region, resulting in NOX5 activation.


Assuntos
Cálcio/metabolismo , Cianobactérias/enzimologia , NADPH Oxidase 5/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , NADPH Oxidase 5/química , NADPH Oxidase 5/genética , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
8.
Curr Protein Pept Sci ; 20(11): 1102-1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553290

RESUMO

Calmodulin (CaM) is a highly conserved eukaryotic Ca2+ sensor protein that is able to bind a large variety of target sequences without a defined consensus sequence. The recognition of this diverse target set allows CaM to take part in the regulation of several vital cell functions. To fully understand the structural basis of the regulation functions of CaM, the investigation of complexes of CaM and its targets is essential. In this minireview we give an outline of the different types of CaM - peptide complexes with 3D structure determined, also providing an overview of recently determined structures. We discuss factors defining the orientations of peptides within the complexes, as well as roles of anchoring residues. The emphasis is on complexes where multiple binding modes were found.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Peptídeos/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Cálcio/metabolismo , Humanos , Ligação Proteica
9.
EMBO Rep ; 20(9): e47488, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31397067

RESUMO

The mitochondrial calcium uniporter (MCU) complex mediates the uptake of Ca2+ into mitochondria. Its activity is regulated by a heterodimer of MICU1 and MICU2, two EF-hand-containing proteins that act as the main gatekeeper of the uniporter. Herein we report the crystal structure of human MICU2 at 1.96 Å resolution. Our structure reveals a dimeric architecture of MICU2, in which each monomer adopts the canonical two-lobe structure with a pair of EF-hands in each lobe. Both Ca2+ -bound and Ca2+ -free EF-hands are observed in our structure. Moreover, we characterize the interaction sites within the MICU2 homodimer, as well as the MICU1-MICU2 heterodimer in both Ca2+ -free and Ca2+ -bound conditions. Glu242 in MICU1 and Arg352 in MICU2 are crucial for apo heterodimer formation, while Phe383 in MICU1 and Glu196 in MICU2 significantly contribute to the interaction in the Ca2+ -bound state. Based on our structural and biochemical analyses, we propose a model for MICU1-MICU2 heterodimer formation and its conformational transition from apo to a more compact Ca2+ -bound state, which expands our understanding of this co-regulatory mechanism critical for MCU's mitochondrial calcium uptake function.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Dimerização , Humanos , Modelos Biológicos , Ligação Proteica
10.
Int J Mol Sci ; 20(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909616

RESUMO

Ca2+ is a universal second messenger that plays a pivotal role in diverse signaling mechanisms in almost all life forms. Since the evolution of life from an aquatic to a terrestrial environment, Ca2+ signaling systems have expanded and diversified enormously. Although there are several Ca2+ sensing molecules found in a cell, EF-hand containing proteins play a principal role in calcium signaling event in plants. The major EF-hand containing proteins are calmodulins (CaMs), calmodulin like proteins (CMLs), calcineurin B-like (CBL) and calcium dependent protein kinases (CDPKs/CPKs). CaMs and CPKs contain calcium binding conserved D-x-D motifs in their EF-hands (one motif in each EF-hand) whereas CMLs contain a D-x3-D motif in the first and second EF-hands that bind the calcium ion. Calcium signaling proteins form a complex interactome network with their target proteins. The CMLs are the most primitive calcium binding proteins. During the course of evolution, CMLs are evolved into CaMs and subsequently the CaMs appear to have merged with protein kinase molecules to give rise to calcium dependent protein kinases with distinct and multiple new functions. Ca2+ signaling molecules have evolved in a lineage specific manner with several of the calcium signaling genes being lost in the monocot lineage.


Assuntos
Motivos de Aminoácidos , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Evolução Molecular , Proteínas de Plantas/química , Plantas/genética , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
11.
BMC Plant Biol ; 18(1): 161, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097007

RESUMO

BACKGROUND: NADPH oxidase (Nox) is a critical enzyme involved in the generation of apoplastic superoxide (O2-), a type of reactive oxygen species (ROS) and hence regulate a wide range of biological functions in many organisms. Plant Noxes are the homologs of the catalytic subunit from mammalian NADPH oxidases and are known as respiratory burst oxidase homologs (Rbohs). Previous studies have highlighted their versatile roles in tackling different kind of stresses and in plant growth and development. In the current study, potential interacting partners and phosphorylation sites were predicted for Rboh proteins from two model species (10 Rbohs from Arabidopsis thaliana and 9 from Oryza sativa japonica). The present work is the first step towards in silico prediction of interacting partners and phosphorylation sites for Rboh proteins from two plant species. RESULTS: In this work, an extensive range of potential partners (unique and common), leading to diverse functions were revealed from interaction networks and gene ontology classifications, where majority of AtRbohs and OsRbohs play role in stress-related activities, followed by cellular development. Further, 68 and 38 potential phosphorylation sites were identified in AtRbohs and OsRbohs, respectively. Their distribution, location and kinase specificities were also predicted and correlated with experimental data as well as verified with the other EF-hand containing proteins within both genomes. CONCLUSIONS: Analysis of regulatory mechanisms including interaction with diverse partners and post-translational modifications like phosphorylation have provided insights regarding functional multiplicity of Rbohs. The bioinformatics-based workflow in the current study can be used to get insights for interacting partners and phosphorylation sites from Rbohs of other plant species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Explosão Respiratória/genética , Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Oryza/enzimologia , Oryza/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Especificidade por Substrato
12.
Proc Natl Acad Sci U S A ; 115(32): E7495-E7501, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038003

RESUMO

Calcium ion is a versatile messenger in many cell-signaling processes. To achieve their functions, calcium-binding proteins selectively bind Ca2+ against a background of competing ions such as Mg2+ The high specificity of calcium-binding proteins has been intriguing since Mg2+ has a higher charge density than Ca2+ and is expected to bind more tightly to the carboxylate groups in calcium-binding pockets. Here, we showed that the specificity for Ca2+ is dictated by the many-body polarization effect, which is an energetic cost arising from the dense packing of multiple residues around the metal ion. Since polarization has stronger distance dependence compared with permanent electrostatics, the cost associated with the smaller Mg2+ is much higher than that with Ca2+ and outweighs the electrostatic attraction favorable for Mg2+ With the AMOEBA (atomic multipole optimized energetics for biomolecular simulation) polarizable force field, our simulations captured the relative binding free energy between Ca2+ and Mg2+ for proteins with various types of binding pockets and explained the nonmonotonic size dependence of the binding free energy in EF-hand proteins. Without electronic polarization, the smaller ions are always favored over larger ions and the relative binding free energy is roughly proportional to the net charge of the pocket. The many-body effect depends on both the number and the arrangement of charged residues. Fine-tuning of the ion selectivity could be achieved by combining the many-body effect and geometric constraint.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Íons/metabolismo , Ligação Proteica , Eletricidade Estática
13.
J Mol Biol ; 429(16): 2490-2508, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28694070

RESUMO

The actin cytoskeleton is a complex network controlled by a vast array of intricately regulated actin-binding proteins. Human plastins (PLS1, PLS2, and PLS3) are evolutionary conserved proteins that non-covalently crosslink actin filaments into tight bundles. Through stabilization of such bundles, plastins contribute, in an isoform-specific manner, to the formation of kidney and intestinal microvilli, inner ear stereocilia, immune synapses, endocytic patches, adhesion contacts, and invadosomes of immune and cancer cells. All plastins comprise an N-terminal Ca2+-binding regulatory headpiece domain followed by two actin-binding domains (ABD1 and ABD2). Actin bundling occurs due to simultaneous binding of both ABDs to separate actin filaments. Bundling is negatively regulated by Ca2+, but the mechanism of this inhibition remains unknown. In this study, we found that the bundling abilities of PLS1 and PLS2 were similarly sensitive to Ca2+ (pCa50 ~6.4), whereas PLS3 was less sensitive (pCa50 ~5.9). At the same time, all three isoforms bound to F-actin in a Ca2+-independent manner, suggesting that binding of only one of the ABDs is inhibited by Ca2+. Using limited proteolysis and mass spectrometry, we found that in the presence of Ca2+ the EF-hands of human plastins bound to an immediately adjacent sequence homologous to canonical calmodulin-binding peptides. Furthermore, our data from differential centrifugation, Förster resonance energy transfer, native electrophoresis, and chemical crosslinking suggest that Ca2+ does not affect ABD1 but inhibits the ability of ABD2 to interact with actin. A structural mechanism of signal transmission from Ca2+ to ABD2 through EF-hands remains to be established.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Multimerização Proteica , Centrifugação , Eletroforese , Transferência Ressonante de Energia de Fluorescência , Humanos , Espectrometria de Massas , Proteínas dos Microfilamentos/química , Domínios Proteicos , Proteólise
14.
Front Plant Sci ; 8: 482, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424729

RESUMO

L. japonicus, a model plant of legumes plants, is widely used in symbiotic nitrogen fixation. A large number of studies on it have been published based on the genetic, biochemical, structural studies. These results are secondhand reports that CaM is a key regulator during Rhizobial infection. In plants, there are multiple CaM genes encoding several CaM isoforms with only minor amino acid differences. Moreover, the regulation mechanism of this family of proteins during rhizobia infection is still unclear. In the current study, a family of genes encoding CaMs and CMLs that possess only the Ca2+-binding EF-hand motifs were analyzed. Using ML and BI tree based on amino acid sequence similarity, seven loci defined as CaMs and 19 CMLs, with at least 23% identity to CaM, were identified. The phylogenetics, gene structures, EF hand motif organization, and expression characteristics were evaluated. Seven CaM genes, encoding only 4 isoforms, were found in L. japonicus. According to qRT-PCR, four LjCaM isoforms are involved in different rhizobia infection stages. LjCaM1 might be involved in the early rhizobia infection epidermal cells stage. Furthermore, additional structural differences and expression behaviors indicated that LjCMLs may have different potential functions from LjCaMs.

15.
BMC Plant Biol ; 17(1): 38, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28158973

RESUMO

BACKGROUND: Ca2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. RESULTS: In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. CONCLUSION: In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.


Assuntos
Evolução Biológica , Sinalização do Cálcio , Calmodulina/genética , Proteínas de Plantas/genética , Plantas/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Genômica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/classificação , Plantas/metabolismo , Alinhamento de Sequência
16.
Protein Expr Purif ; 123: 35-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27001424

RESUMO

Hippocalcin is a 193 aa protein that is a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. Mice that lack the function of this protein are compromised in the long term potentiation aspect of memory generation. Recently, mutations in the gene have been linked with dystonia in human. The protein has no intrinsic enzyme activity but is known to bind to variety of target proteins. Very little information is available on how the protein executes its critical role in signaling pathways, except that it is regulated by binding of calcium. Further delineation of its function requires large amounts of pure protein. In this report, we present a single-step purification procedure that yields high quantities of the bacterially expressed, recombinant protein. The procedure may be adapted to purify the protein from inclusion bodies or cytosol in its myristoylated or non-myristoylated forms. MALDI-MS (in source decay) analyses demonstrates that the myristoylation occurs at the glycine residue. The protein is also biologically active as measured through tryptophan fluorescence, mobility shift and guanylate cyclase activity assays. Thus, further analyses of hippocalcin, both structural and functional, need no longer be limited by protein availability.


Assuntos
Escherichia coli/genética , Hipocalcina/genética , Hipocalcina/isolamento & purificação , Animais , Cromatografia Líquida , Expressão Gênica , Vetores Genéticos/genética , Hipocalcina/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Neurosci Lett ; 600: 115-20, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26004254

RESUMO

Dp40 is the shortest DMD gene product that has been reported to date. It is encoded by exons 63-70, a region required for a ß-dystroglycan interaction. Its expression has been identified in rat, mouse, and human; however, its function remains unknown. To explore the expression of Dp40 transcript and subcellular localization of epitope-tagged Dp40 proteins, RT-PCR and immunofluorescence assays were performed in PC12 cells. The expression of Dp40 mRNA was found in undifferentiated and nerve growth factor-differentiated PC12 cells. According to immunofluorescence analyses, the recombinant protein Dp40 was mainly localized in the cell periphery/cytoplasm of undifferentiated and differentiated PC12 cells, a small amount of this protein is localized to the nucleus of differentiated cells. With the aim to identify the amino acids involved in the nuclear localization of Dp40, an in silico analysis was performed and it predicted that prolines 93 and 170, located within EF1 and EF2-hand domains, are involved in the nuclear localization of this protein. This prediction was confirmed by site-directed mutagenesis, the Dp40-L93P mutant was localized to the nucleus and cell periphery, while Dp40-L170P and Dp40-L93/170P showed mainly a nuclear localization. Dp40 co-localizes with ß-dystroglycan and the co-localization score was statistically reduced in Dp40-L93P, Dp40-L170P and Dp40-L93/170P mutants.


Assuntos
Distrofina/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Distroglicanas/metabolismo , Distrofina/genética , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Mutação , Células PC12 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos
18.
Front Plant Sci ; 6: 1146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734045

RESUMO

Calcium ions are considered ubiquitous second messengers in eukaryotic signal transduction pathways. Intracellular Ca(2+) concentration are modulated by various signals such as hormones and biotic and abiotic stresses. Modulation of Ca(2+) ion leads to stimulation of calcium dependent protein kinase genes (CPKs), which results in regulation of gene expression and therefore mediates plant growth and development as well as biotic and abiotic stresses. Here, we reported the CPK gene family of 40 different plant species (950 CPK genes) and provided a unified nomenclature system for all of them. In addition, we analyzed their genomic, biochemical and structural conserved features. Multiple sequence alignment revealed that the kinase domain, auto-inhibitory domain and EF-hands regions of regulatory domains are highly conserved in nature. Additionally, the EF-hand domains of higher plants were found to contain four D-x-D and two D-E-L motifs, while lower eukaryotic plants had two D-x-D and one D-x-E motifs in their EF-hands. Phylogenetic analysis showed that CPK genes are clustered into four different groups. By studying the CPK gene family across the plant lineage, we provide the first evidence of the presence of D-x-D motif in the calcium binding EF-hand domain of CPK proteins.

19.
Biotechnol Adv ; 32(3): 551-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24561450

RESUMO

NADPH oxidase (NOX) is a key player in the network of reactive oxygen species (ROS) producing enzymes. It catalyzes the production of superoxide (O2(-)), that in turn regulates a wide range of biological functions in a broad range of organisms. Plant Noxes are known as respiratory burst oxidase homologs (Rbohs) and are homologs of catalytic subunit of mammalian phagocyte gp91(phox). They are unique among other ROS producing mechanisms in plants as they integrate different signal transduction pathways in plants. In recent years, there has been addition of knowledge on various aspects related to its structure, regulatory components and associated mechanisms, and its plethora of biological functions. This update highlights some of the recent developments in the field with particular reference to important members of the plant kingdom.


Assuntos
NADPH Oxidases , Proteínas de Plantas , Plantas , Estresse Oxidativo , Plantas/enzimologia , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
FEBS J ; 280(21): 5551-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23601118

RESUMO

Calmodulin (CaM) is a ubiquitous, highly conserved, eukaryotic protein that binds to and regulates a number of diverse target proteins involved in different functions such as metabolism, muscle contraction, apoptosis, memory, inflammation and the immune response. In this minireview, we analyze the large number of CaM-complex structures deposited in the Protein Data Bank (i.e. crystal and nuclear magnetic resonance structures) to gain insight into the structural diversity of CaM-binding sites and mechanisms, such as those for CaM-activated protein kinases and phosphatases, voltage-gated Ca(2+)-channels and the plasma membrane Ca(2+)-ATPase.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Quinase de Cadeia Leve de Miosina/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA