Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Neurobiol ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922063

RESUMO

Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.

2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895023

RESUMO

Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Osteoclastos , Osteoclastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Ligante RANK/metabolismo
3.
FEBS J ; 290(21): 5204-5233, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531324

RESUMO

Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or ß-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus ß-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, ß-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and ß-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and ß-Arr2 played a main role in ß-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, ß-Arr2, and importinß1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.


Assuntos
Dopamina , MAP Quinases Reguladas por Sinal Extracelular , Arrestinas/genética , beta-Arrestinas , Dopamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Dopaminérgicos/metabolismo
4.
J Microbiol Biotechnol ; 33(12): 1576-1586, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-37644733

RESUMO

Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Cães , Humanos , Células Madin Darby de Rim Canino , Adenilil Ciclases , Colforsina/farmacologia , Vírus da Influenza A Subtipo H3N2 , Sistema de Sinalização das MAP Quinases , Influenza Humana/prevenção & controle
5.
Cell Signal ; 109: 110789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392861

RESUMO

Glioblastoma (GBM) is a malignant tumor characterized by poor prognosis and low overall survival (OS) rate. Identification of novel biological markers for the diagnosis and treatment of GBM is crucial to developing interventions to improve patient survival. GNA13, a member of the G12 family, has been reported to play important roles in a variety of biological processes involved in tumorigenesis and development. However, its role in GBM is currently unknown. Here, we explored the expression patterns and functions of GNA13 in GBM, as wells its impact on metastasis process. Results showed that GNA13 was downregulated in GBM tissues and correlated with poor prognosis of GBM. Downregulation of GNA13 promoted the migration, invasion and proliferation of GBM cells; whereas its overexpression abolished these effects. Western blots revealed that GNA13 knockdown and overexpression upregulated and inhibited the phosphorylation of ERKs, respectively. Moreover, GNA13 was the upstream of ERKs signaling to regulating ERKs phosphorylation level. Furthermore, U0126 alleviated the metastasis effect induced by GNA13 knockdown. Bioinformatics analyses and qRT-PCR experiments demonstrated that GNA13 could regulate FOXO3, a downstream signaling molecule of ERKs pathway. Overall, our results demonstrate that GNA13 expression is negatively correlated with GBM and can suppress tumor metastasis by inhibiting the ERKs signaling pathway and upregulating FOXO3 expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo
6.
Biomedicines ; 11(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509496

RESUMO

Breast cancer is a widespread and complex disease characterized by abnormal signaling pathways that promote tumor growth and progression. Despite significant medical advances and the development of increasingly effective therapies for breast cancer, drug resistance and reduced sensitivity to prior therapies remain persistent challenges. Dysregulation of growth factors such as FGFs and EGF and their receptors is a contributing factor to reduced response to treatment, promoting cell survival and proliferation, metastasis, EMT or increased expression of ABC transporters. Our study demonstrates a protective role for FGF1 in MCF-7 breast cancer cells against taltobulin-induced cytotoxicity, mediated by activation of its receptors and compares its activity to EGF, another growth factor involved in breast cancer development and progression. The mechanisms of action of these two proteins are different: FGF1 exerts its effects through the activation of both ERKs and AKT, whereas EGF acts only through ERKs. FGF1 action in the presence of the drug promotes cell viability, reduces apoptosis and increases cell migration. Although EGF and its receptors have received more attention in breast cancer research to date, our findings highlight the key role played by FGFs and their receptors in promoting drug resistance to tubulin polymerization inhibitors in FGFR-positive tumors.

7.
Cancers (Basel) ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174126

RESUMO

Resistance to cancer therapies remains a clinical challenge and an unsolved problem. In a previous study, we characterized a new colon cancer cell line, namely HT500, derived from human HT29 cells and resistant to clinically relevant levels of ionizing radiation (IR). Here, we explored the effects of two natural flavonoids, quercetin (Q) and fisetin (F), well-known senolytic agents that inhibit genotoxic stress by selectively removing senescent cells. We hypothesized that the biochemical mechanisms responsible for the radiosensitising effects of these natural senolytics could intercept multiple biochemical pathways of signal transduction correlated to cell death resistance. Radioresistant HT500 cells modulate autophagic flux differently than HT29 cells and secrete pro-inflammatory cytokines (IL-8), commonly associated with senescence-related secretory phenotypes (SASP). Q and F inhibit PI3K/AKT and ERK pathways, which promote p16INK4 stability and resistance to apoptosis, but they also activate AMPK and ULK kinases in response to autophagic stress at an early stage. In summary, the combination of natural senolytics and IR activates two forms of cell death: apoptosis correlated to the inhibition of ERKs and lethal autophagy dependent on AMPK kinase. Our study confirms that senescence and autophagy partially overlap, share common modulatory pathways, and reveal how senolytic flavonoids can play an important role in these processes.

8.
Front Pharmacol ; 13: 1005438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353500

RESUMO

Background: There is a significant gender difference in the prevalence of depression. Recent studies have shown that estrogen plays a crucial role in depression. Therefore, studying the specific mechanism of estrogen's role in depression can provide new ideas to address the treatment of depression. Chaigui granule has been shown to have exact antidepressant efficacy, and the contents of saikosaponin (a, b1, b2, d) and paeoniflorin in Chaigui granule are about 0.737% and 0.641%, respectively. Some studies have found that they can improve depression-induced decrease in testosterone (T) levels (∼36.99% decrease compared to control). However, whether Chaigui granule can exert antidepressant efficacy by regulating estrogen is still unclear. This study aimed to elucidate the regulation of estrogen levels by Chaigui granule and the underlying mechanism of its anti-depressant effect. Methods: Eighty-four male Sprague-Dawley (SD) rats were modeled using a chronic unpredictable mild stress (CUMS) procedure. The administration method was traditional oral gavage administration, and behavioral indicators were used to evaluate the anti-depressant effect of Chaigui granule. Enzyme-linked immunosorbent assay (ELISA) was adopted to assess the modulating impact of Chaigui granule on sex hormones. Then, reverse transcription-quantitative PCR (RT-qPCR), and Western blot (WB) techniques were employed to detect extracellular regulated protein kinases (ERK) signaling-related molecules downstream of estradiol in the hippocampus tissue. Results: The administration of Chaigui granule significantly alleviated the desperate behavior of CUMS-induced depressed rats. According to the results, we found that Chaigui granule could upregulate the level of estradiol (E2) in the serum (∼46.56% increase compared to model) and hippocampus (∼26.03% increase compared to model) of CUMS rats and increase the levels of CYP19A1 gene and protein, which was the key enzyme regulating the synthesis of T into E2 in the hippocampus. Chaigui granule was also found to have a significant back-regulatory effect on the gene and protein levels of ERß, ERK1, and ERK2. Conclusion: Chaigui granule can increase the synthesis of E2 in the hippocampus of CUMS-induced depressed rats and further exert antidepressant effects by activating the CYP19A1-E2-ERKs signaling pathway.

9.
Cereb Cortex ; 32(3): 569-582, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297798

RESUMO

Drug abuse is a dramatic challenge for the whole society because of high relapse rate. Environmental cues are crucial for the preference memory of drug abuse. Extinction therapy has been developed to inhibit the motivational effect of drug cues to prevent the reinstatement of morphine abuse. However, extinction therapy alone only forms a new kind of unstable inhibitory memory. We found that morphine conditioned place preference (CPP) extinction training increased the association of nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the dorsal hippocampus (dHPC) significantly and blocking the morphine-induced nNOS-CAPON association using Tat-CAPON-12C during and after extinction training reversed morphine-induced hippocampal neuroplasticity defect and prevented the reinstatement and spontaneous recovery of morphine CPP. Moreover, in the hippocampal selective ERK2 knock-out or nNOS knockout mice, the effect of Tat-CAPON-12C on the reinstatement of morphine CPP and hippocampal neuroplasticity disappeared, suggesting ERK2 is necessary for the effects of Tat-CAPON-12C. Together, our findings suggest that nNOS-CAPON interaction in the dHPC may affect the consolidation of morphine CPP extinction and dissociating nNOS-CAPON prevents the reinstatement and spontaneous recovery of morphine CPP, possibly through ERK2-mediated neuroplasticity and extinction memory consolidation, offering a new target to prevent the reinstatement of drug abuse.


Assuntos
Condicionamento Clássico , Morfina , Animais , Condicionamento Psicológico , Extinção Psicológica , Hipocampo , Camundongos , Morfina/farmacologia , Óxido Nítrico Sintase
10.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948315

RESUMO

The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by the switch on of Progesterone (P4) during the periovulatory phase remains to be clarified. The present research aimed to investigate in vivo VEGF-mediated mechanisms by inducing the development of periovulatory follicles using a pharmacologically validated synchronization treatment carried out in presence or absence of P4 receptor antagonist RU486. Spatio-temporal expression profiles of VEGF, FLT1, and FLK1 receptors and the two major MAPK/ERKs and PI3K/AKT downstream pathways were analyzed on granulosa and on theca compartment. For the first time, the results demonstrated that in vivo administration of P4 antagonist RU486 inhibits follicular VEGF receptors' signaling mainly acting on the theca layer by downregulating the activation of ERKs and AKTs. Under the effect of RU486, periovulatory follicles' microarchitecture did not move towards the periovulatory stage. The present evidence provides new insights on P4 in vivo biological effects in driving vascular and tissue remodeling during the periovulatory phase.


Assuntos
Mifepristona/farmacologia , Folículo Ovariano/efeitos dos fármacos , Progesterona/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Gonadotropinas/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Folículo Ovariano/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Suínos
11.
Int Immunopharmacol ; 99: 107987, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343936

RESUMO

Acute lung injury (ALI) is a critical manifestation of sepsis/septic shock. Disruption of endothelial barrier function is critical for ALI pathogenesis; however, the regulation of endothelial barrier integrity remains largely unclear. Heat shock protein A12A (HSPA12A) is an atypical member of HSP70 family. We have recently demonstrated that hepatocyte HSPA12A attenuated the bacteria endotoxin (lipopolysaccharide, LPS)-induced liver injury. However, the role of HSPA12A in endothelial barrier function and ALI is unknown. Here in this study, HSPA12A showed upregulation in lungs of mice during bacteria endotoxin (lipopolysaccharide, LPS)-induced lung injury in vivo and in primary human umbilical vein endothelial cells (HUVECs) during LPS-induced barrier disruption in vitro. Knockout of HSPA12A in mice exacerbated LPS-induced ALI. Intriguingly, overexpression of HSPA12A in HUVECs attenuated the LPS-induced endothelial hyperpermeability. In line with this, HSPA12A overexpression increased VE-cadherin and decreased VEGF expression following LPS treatment in HUVECs. Also, knockout of HSPA12A enhanced the LPS-evoked pulmonary endothelial cell apoptosis in mice whereas overexpression of HSPA12A inhibited the LPS-induced death of HUVECs. The levels of ERKs and Akt phosphorylation in HUVECs were promoted by HSPA12A overexpression when cells exposed to LPS. Importantly, inhibition of either ERKs or Akt diminished the HSPA12A-induced protection from LPS-induced endothelial hyperpermeability and death. Taken together, these findings indicated that HSPA12A is a novel regulator of endothelial barrier function through both ERKs and Akt-mediated signaling. HSPA12A might represent a viable strategy for the pulmonary protection against endotoxemia challenge.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Endotélio Vascular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotoxemia/induzido quimicamente , Proteínas de Choque Térmico HSP70/deficiência , Proteínas de Choque Térmico HSP70/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
12.
Peptides ; 135: 170423, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086087

RESUMO

Advanced stage of prostate cancer cells preferentially metastasizes to varying bones of prostate cancer patients, resulting in incurable disease with poor prognosis and limited therapeutical treatment options. Calcitonin gene-related peptide (CGRP), a neuropeptide produced by prostate gland, is known to play a pivotal role in facilitating tumor growth and metastasis of numerous human cancers. In this study, we aim to investigate the clinical relevance of CGRP in prostate cancer patients and the effects of CGRP and CGRP antagonists on prostate tumor growth in the mouse model. The prostate tumor-bearing mice were received either CGRP or CGRP antagonist treatment, and the tumor growth was monitored by quantification of luminescence intensities. We found that the CGRP+ nerve fiber density and serum CGRP levels were substantially upregulated in the bone or serum specimens from advanced prostate cancer patients as well as in prostate tumor-bearing mice. Administration of CGRP promoted, whereas treatment of CGRP antagonists inhibited prostate tumor growth in the femurs of mice. In addition, CGRP treatment activated extracellular signal-regulated kinases (ERKs)/ Signal transducer and activator of transcription 3 (STAT3) signaling in prostate cancer cells. Targeting CGRP may serve as a potential therapeutic strategy for advanced prostate cancer patients.


Assuntos
Neoplasias Ósseas/genética , Peptídeo Relacionado com Gene de Calcitonina/sangue , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Animais , Neoplasias Ósseas/sangue , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Ativação Transcricional/genética
13.
Cell Biol Int ; 45(3): 569-579, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33169892

RESUMO

Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1-10 ng/ml) of TNF-α and decreased in high concentration (50-100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Odontogênese , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Tempo , Adulto Jovem
14.
Acta Pharm Sin B ; 10(8): 1453-1475, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963943

RESUMO

Angiokinases, such as vascular endothelial-, fibroblast- and platelet-derived growth factor receptors (VEGFRs, FGFRs and PDGFRs) play crucial roles in tumor angiogenesis. Anti-angiogenesis therapy using multi-angiokinase inhibitor has achieved great success in recent years. In this study, we presented the design, synthesis, target identification, molecular mechanism, pharmacodynamics (PD) and pharmacokinetics (PK) research of a novel triple-angiokinase inhibitor WXFL-152. WXFL-152, identified from a series of 4-oxyquinoline derivatives based on a structure-activity relationship study, inhibited the proliferation of vascular endothelial cells (ECs) and pericytes by blocking the angiokinase signals VEGF/VEGFR2, FGF/FGFRs and PDGF/PDGFRß simultaneously in vitro. Significant anticancer effects of WXFL-152 were confirmed in multiple preclinical tumor xenograft models, including a patient-derived tumor xenograft (PDX) model. Pharmacokinetic studies of WXFL-152 demonstrated high favourable bioavailability with single-dose and continuous multi-dose by oral administration in rats and beagles. In conclusion, WXFL-152, which is currently in phase Ib clinical trials, is a novel and effective triple-angiokinase inhibitor with clear PD and PK in tumor therapy.

15.
Oncol Lett ; 19(6): 4177-4182, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32391111

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. OSCC cells are highly invasive, a characteristic that involves epithelial-mesenchymal transition (EMT); the conversion of immotile epithelial cells into motile mesenchymal cells. EMT is involved in the progression of various types of cancer by promoting tumour cell scattering and conferring to these cells cancer stem cell (CSC)-like characteristics, such as self-renewal. Hepatocyte growth factor (HGF) signalling plays an important role in EMT induction and, therefore, contributes to cell invasion and metastasis in cancer. Due to its potential chemopreventative and anti-tumour activities, curcumin has attracted much interest and has been shown to act as a potent EMT inhibitor in various types of cancer. However, at present, the potential effects of curcumin on HGF-induced EMT in OSCC have not been investigated. Here, we demonstrated that HGF signalling could induce EMT in the HSC4 and Ca9-22 OSCC cell lines via the HGF receptor c-Met and downstream activation of the pro-survival ERK pathway. Notably, curcumin inhibited HGF-induced EMT and cell motility in HSC-4 and Ca9-22 cells via c-Met blockade. Therefore, these findings establish curcumin as a candidate drug for OSCC treatment. Furthermore, curcumin was able to effectively inhibit the HGF-induced increase in the levels of vimentin by downregulating the expression of phosphorylated c-Met, an ERK. In conclusion, the results of the present study demonstrated that curcumin was able to reverse HGF-induced EMT, possibly by inhibiting c-Met expression in oral cancer cells, providing a strong basis for the development of novel approaches for the treatment of oral cancer.

16.
J Reprod Dev ; 66(5): 399-409, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32418930

RESUMO

In the present work, we described the expression and activity of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cells (PGCs) from 8.5-14.5 days post coitum (dpc) and investigated whether these kinases play a role in regulating the various processes of PGC development. Using immunofluorescence and immunoblotting to detect the active phosphorylated form of ERK1-2 (p-ERK1-2), we found that the kinases were present in most proliferating 8.5-10.5 dpc PGCs, low in 11.5 dpc PGCs, and progressively increasing between 12.5-14.5 dpc both in female and male PGCs. In vitro culture experiments showed that inhibiting activation of ERK1-2 with the MEK-specific inhibitor U0126 significantly reduced the growth of 8.5 dpc PGCs in culture but had little effect on 11.5-12.5 dpc PGCs. Moreover, we found that the inhibitor did not affect the adhesion of 11.5 dpc PGCs, but it significantly reduced their motility features onto a cell monolayer. Further, while the ability of female PGCs to begin meiosis was not significantly affected by U0126, their progression through meiotic prophase I was slowed down. Notably, the activity of ERK1-2 was necessary for maintaining the correct expression of oocyte-specific genes crucial for germ cells survival and the formation of primordial follicles.


Assuntos
Células Germinativas/citologia , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Animais , Butadienos/farmacologia , Ciclo Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Primers do DNA/genética , Inibidores Enzimáticos/farmacologia , Feminino , Perfilação da Expressão Gênica , Técnicas In Vitro , Masculino , Meiose , Prófase Meiótica I , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Nitrilas/farmacologia , Oócitos/metabolismo , Oogênese/genética , Folículo Ovariano/citologia , Ovário/metabolismo
17.
Cancers (Basel) ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326402

RESUMO

The synergistic anticancer effect of gemcitabine (GEM) and resveratrol (RSVL) has been noted in certain cancer types. However, whether the same phenomenon would occur in lung cancer is unclear. Here, we uncovered the molecular mechanism by which RSVL enhances the anticancer effect of GEM against lung cancer cells both in vitro and in vivo. We established human lung adenocarcinoma HCC827 xenografts in nude mice and treated them with GEM and RSVL to detect their synergistic effect in vivo. Tumor tissue sections from nude mice were subjected to hematoxylin and eosin staining for blood vessel morphological observation, and immunohistochemistry was conducted to detect CD31-positive staining blood vessels. We also established the HCC827-human umbilical vein endothelial cell (HUVEC) co-culture model to observe the tubule network formation. Human angiogenesis antibody array was used to screen the angiogenesis-related proteins in RSVL-treated HCC827. RSVL suppressed the expression of endoglin (ENG) and increased tumor microvessel growth and blood perfusion into tumor. Co-treatment of RSVL and GEM led to more tumor growth suppression than treatment of GEM alone. Mechanistically, using the HCC827-HUVEC co-culture model, we showed that RSVL-suppressed ENG expression was accompanied with augmented levels of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 and increased tubule network formation, which may explain why RSVL promoted tumor microvessel growth in vivo. RSVL promoted tumor microvessel growth via ENG and ERK and enhanced the anticancer efficacy of GEM. Our results suggest that intake of RSVL may be beneficial during lung cancer chemotherapy.

18.
Dig Dis Sci ; 64(11): 3203-3214, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31147803

RESUMO

BACKGROUND: We previously reported that there were potentially certain correlations between the high expression of SATB1 and the HBV infection in human hepatocellular carcinoma tissues, and SATB1 promoted tumor growth and metastasis in liver cancer. Hepatitis B virus (HBV) infection is internationally recognized as a contributing factor to metastasis in liver cancer. The anoikis prevention of detached malignant cancer cells is the precondition for metastasis. AIMS: Our studies aimed to explore the relationship between HBV infection, SATB1 and liver cancer cell anoikis and their specific regulatory mechanisms in HBV-associated liver cancer. METHODS: HepG2 cell was transiently transfected with pBlue-HBV and seven types of HBV-encoded protein plasmids. Anoikis assay and soft agarose colony formation experiment were analyzed in HepG2.2.15-SATB1 siRNA cells, HBx-overexpressing cells and HepG2-HBx-SATB1 siRNA cells. The inhibitors of signaling molecules were used to treat of HepG2-HBx cells, and then, the SATB1 expression and phosphorylation levels of signaling molecules were evaluated. RESULTS: Our data show that the high expression of SATB1 and enhanced anoikis resistance were observed in HBV stably expressing cell line HepG2.2.15 and high metastatic potential cell line SK-HEP-1. HBV can induce SATB1 expression and suppress anoikis of unattached liver cancer cells. Moreover, SATB1 expression and anoikis resistance were mainly regulated by HBV-encoded viral protein HBx through the activation of ERK and p38 MAPK signaling pathways to promote metastasis of liver cancer. CONCLUSION: These data suggest that the HBV-encoded HBx and SATB1 may play an important role in promoting anoikis resistance and metastasis in HBV-associated liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/biossíntese , Transativadores/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anoikis/fisiologia , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
19.
Appl Biochem Biotechnol ; 189(2): 647-660, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31093908

RESUMO

Based on the various pharmacological activities of tamarixetin, the present study investigated the cytotoxicity property of tamarixetin in human liver cancer cells including PLC/PRF/5 and HepG2 cells, and their xenografted tumor nude mice. In cells, tamarixetin incubation resulted in the suppression on cell viability; enhanced cell apoptosis rate, LDH release, caspase-3 activation, and reactive oxygen species accumulation; and decreased mitochondrial membrane potential in a dose-dependent manner. Tamarixetin inhibited the growth of PLC/PRF/5- and HepG2-xenografted tumors in BALB/c nude mice after 14-day administration without influencing their bodyweights and organ functions including liver and spleen. Tamarixetin enhanced the expression levels of pro-apoptotic proteins including Bax and cleaved caspase-3 and inhibited the expression levels of anti-apoptotic proteins including Bcl-2 and Bcl-xL in liver cancer cells and their xenografted tumor tissues. Furthermore, tamarixetin significantly suppressed the phosphorylation of ERKs and AKT in both PLC/PRF/5 and HepG2 cells, and tumor tissues. All present data suggest that tamarixetin displays pro-apoptotic properties in liver cancer cells related to the mitochondria apoptotic pathway via regulating the ERKs and AKT signaling.


Assuntos
Apoptose/efeitos dos fármacos , Dissacarídeos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias Hepáticas/metabolismo , Quercetina/análogos & derivados , Animais , Caspase 3/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias Hepáticas/patologia , Proteínas de Neoplasias/metabolismo , Quercetina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Artigo em Inglês | MEDLINE | ID: mdl-30940482

RESUMO

Treatment-resistant depression (TRD) is a major public health issue, as it is common for patients with depression to fail to respond to adequate trials of antidepressants. However, a well-established animal model of TRD is still warranted. The present study focused on selective serotonin reuptake inhibitor (SSRI) resistance, and aimed to investigate whether higher levels of traumatic stress caused by greater numbers of foot-shocks may lead to severe depression and to examine the feasibility of this as an animal model of SSRI-resistant depression. To reveal the correlation between traumatic stress and severe depression, rats received 3, 6 and 10 tone (conditioned stimulus, CS)-shock (unconditioned stimulus, US) pairings to mimic mild, moderate, and severe traumatic events, and subsequent depressive-like behaviors and protein immunocontents were analyzed. The antidepressant efficacy was assessed for ketamine and SSRI (i.e., fluoxetine) treatment. We found that only the severe stress group presented depressive-like behaviors. Phosphorylation of extracellular signal-regulated kinases (ERKs) was decreased in the amygdala and prefrontal cortex (PFC). The immunocontents of GluA1 and PSD 95 were increased in the amygdala and decreased in the PFC. Moreover, the glutamate-related abnormalities in the amygdala and PFC were normalized by single-dose (10 mg/kg, i.p.) ketamine treatment. In contrast, the depressive-like behaviors were not reversed by 28 days of fluoxetine treatment (10 mg/kg, i.p.) in the severe stress group. Our data demonstrated that high levels of traumatic stress could lead to SSRI-resistant depressive symptoms through impacts on the glutamatergic system, and that this rat model has the potential to be a feasible animal model of SSRI-resistant depression.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Ketamina/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Antidepressivos/administração & dosagem , Transtorno Depressivo Resistente a Tratamento/metabolismo , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Eletrochoque/psicologia , Fluoxetina/uso terapêutico , Ketamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA