Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Med Virol ; 96(7): e29810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39049549

RESUMO

Enterovirus D68 (EV-D68) is an emerging agent for which data on the susceptible adult population is scarce. We performed a 6-year analysis of respiratory samples from influenza-like illness (ILI) admitted during 2014-2020 in 4-10 hospitals in the Valencia Region, Spain. EV-D68 was identified in 68 (3.1%) among 2210 Enterovirus (EV)/Rhinovirus (HRV) positive samples. Phylogeny of 59 VP1 sequences showed isolates from 2014 clustering in B2 (6/12), B1 (5/12), and A2/D1 (1/12) subclades; those from 2015 (n = 1) and 2016 (n = 1) in B3 and A2/D1, respectively; and isolates from 2018 in A2/D3 (42/45), and B3 (3/45). B1 and B2 viruses were mainly detected in children (80% and 67%, respectively); B3 were equally distributed between children and adults; whereas A2/D1 and A2/D3 were observed only in adults. B3 viruses showed up to 16 amino acid changes at predicted antigenic sites. In conclusion, two EV-D68 epidemics linked to ILI hospitalized cases occurred in the Valencia Region in 2014 and 2018, with three fatal outcomes and one ICU admission. A2/D3 strains from 2018 were associated with severe respiratory infection in adults. Because of the significant impact of non-polio enteroviruses in ILI and the potential neurotropism, year-round surveillance in respiratory samples should be pursued.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Hospitalização , Influenza Humana , Filogenia , Humanos , Espanha/epidemiologia , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus Humano D/genética , Enterovirus Humano D/classificação , Enterovirus Humano D/isolamento & purificação , Criança , Adulto , Pré-Escolar , Masculino , Adolescente , Feminino , Pessoa de Meia-Idade , Lactente , Idoso , Adulto Jovem , Hospitalização/estatística & dados numéricos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Estações do Ano , Idoso de 80 Anos ou mais , Efeitos Psicossociais da Doença , Recém-Nascido
2.
Emerg Infect Dis ; 30(8): 1687-1691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043450

RESUMO

In December 2023, we observed through hospital-based surveillance a severe outbreak of enterovirus D68 infection in pediatric inpatients in Dakar, Senegal. Molecular characterization revealed that subclade B3, the dominant lineage in outbreaks worldwide, was responsible for the outbreak. Enhanced surveillance in inpatient settings, including among patients with neurologic illnesses, is needed.


Assuntos
Surtos de Doenças , Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Humanos , Senegal/epidemiologia , Enterovirus Humano D/genética , Enterovirus Humano D/classificação , Enterovirus Humano D/isolamento & purificação , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Pré-Escolar , Lactente , Criança , Filogenia , Masculino , Feminino , Doença Aguda/epidemiologia , Adolescente , Hospitais , História do Século XXI
3.
J Virol ; 98(7): e0039724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869283

RESUMO

Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory and neurologic disease [acute flaccid myelitis (AFM)]. Intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with US/IL/14-18952 (IL52), a clinical isolate from the 2014 EV-D68 epidemic, results in many of the pathogenic features of human AFM, including viral infection of the spinal cord, death of motor neurons, and resultant progressive paralysis. In distinction, CA/14-4231 (CA4231), another clinical isolate from the 2014 EV-D68 outbreak, does not cause paralysis in mice, does not grow in the spinal cord, and does not cause motor neuron loss following IM injection. A panel of chimeric viruses containing sequences from IL52 and CA4231 was used to demonstrate that VP1 is the main determinant of EV-D68 neurovirulence following IM injection of neonatal SW mice. VP1 contains four amino acid differences between IL52 and CA4231. Mutations resulting in substituting these four amino acids (CA4231 residues into the IL52 polyprotein) completely abolished neurovirulence. Conversely, mutations resulting in substituting VP1 IL52 amino acid residues into the CA4231 polyprotein created a virus that induced paralysis to the same degree as IL52. Neurovirulence following infection of neonatal SW mice with parental and chimeric viruses was associated with viral growth in the spinal cord. IMPORTANCE: Emerging viruses allow us to investigate mutations leading to increased disease severity. Enterovirus D68 (EV-D68), once the cause of rare cases of respiratory illness, recently acquired the ability to cause severe respiratory and neurologic disease. Chimeric viruses were used to demonstrate that viral structural protein VP1 determines growth in the spinal cord, motor neuron loss, and paralysis following intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with EV-D68. These results have relevance for predicting the clinical outcome of future EV-D68 epidemics as well as targeting retrograde transport as a potential strategy for treating virus-induced neurologic disease.


Assuntos
Proteínas do Capsídeo , Viroses do Sistema Nervoso Central , Modelos Animais de Doenças , Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Animais , Enterovirus Humano D/patogenicidade , Enterovirus Humano D/genética , Enterovirus Humano D/fisiologia , Mielite/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/patologia , Doenças Neuromusculares/virologia , Doenças Neuromusculares/patologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Viroses do Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/patologia , Humanos , Medula Espinal/virologia , Medula Espinal/patologia , Neurônios Motores/virologia , Neurônios Motores/patologia , Animais Recém-Nascidos , Virulência , Paralisia/virologia
4.
medRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562876

RESUMO

Background: Most seasonally circulating enteroviruses result in asymptomatic or mildly symptomatic infections. In rare cases, however, infection with some subtypes can result in paralysis or death. Of the 300 subtypes known, only poliovirus is reportable, limiting our understanding of the distribution of other enteroviruses that can cause clinical disease. Objective: The overarching objectives of this study were to: 1) describe the distribution of enteroviruses in Arizona during the late summer and fall of 2022, the time of year when they are thought to be most abundant, and 2) demonstrate the utility of viral pan-assay approaches for semi-agnostic discovery that can be followed up by more targeted assays and phylogenomics. Methods: This study utilizes pooled nasal samples collected from school-aged children and long-term care facility residents, and wastewater from multiple locations in Arizona during July-October of 2022. We used PCR to amplify and sequence a region common to all enteroviruses, followed by species-level bioinformatic characterization using the QIIME 2 platform. For Enterovirus-D68 (EV-D68), detection was carried out using RT-qPCR, followed by confirmation using near-complete whole EV-D68 genome sequencing using a newly designed tiled amplicon approach. Results: In the late summer and early fall of 2022, multiple enterovirus species were identified in Arizona wastewater, with Coxsackievirus A6, EV-D68, and Coxsackievirus A19 composing 86% of the characterized reads sequenced. While EV-D68 was not identified in pooled human nasal samples, and the only reported acute flaccid myelitis case in Arizona did not test positive for the virus, an in-depth analysis of EV-D68 in wastewater revealed that the virus was circulating from August through mid-October. A phylogenetic analysis on this relatively limited dataset revealed just a few importations into the state, with a single clade indicating local circulation. Significance: This study further supports the utility of wastewater-based epidemiology to identify potential public health threats. Our further investigations into EV-D68 shows how these data might help inform healthcare diagnoses for children presenting with concerning neurological symptoms.

5.
J Infect Dis ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547499

RESUMO

Enterovirus D68 (EV-D68) infections are associated with severe respiratory disease and acute flaccid myelitis (AFM). The European Non-Polio Enterovirus Network (ENPEN) aimed to investigate the epidemiological and genetic characteristics of EV-D68 and its clinical impact during the fall-winter season of 2021/22. From 19 European countries, 58 institutes reported 10,481 (6.8%) EV-positive samples of which 1,004 (9.6%) were identified as EV-D68 (852 respiratory samples). Clinical data was reported for 969 cases. 78.9% of infections were reported in children (0-5 years); 37.9% of cases were hospitalised. Acute respiratory distress was commonly noted (93.1%) followed by fever (49.4%). Neurological problems were observed in 6.4% of cases with six reported with AFM. Phylodynamic/Nextstrain and phylogenetic analyses based on 694 sequences showed the emergence of two novel B3-derived lineages, with no regional clustering. In conclusion, we describe a large-scale EV-D68 European upsurge with severe clinical impact and the emergence of B3-derived lineages.

6.
Emerg Infect Dis ; 30(3): 423-431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407198

RESUMO

Surveillance for emerging pathogens is critical for developing early warning systems to guide preparedness efforts for future outbreaks of associated disease. To better define the epidemiology and burden of associated respiratory disease and acute flaccid myelitis (AFM), as well as to provide actionable data for public health interventions, we developed a multimodal surveillance program in Colorado, USA, for enterovirus D68 (EV-D68). Timely local, state, and national public health outreach was possible because prospective syndromic surveillance for AFM and asthma-like respiratory illness, prospective clinical laboratory surveillance for EV-D68 among children hospitalized with respiratory illness, and retrospective wastewater surveillance led to early detection of the 2022 outbreak of EV-D68 among Colorado children. The lessons learned from developing the individual layers of this multimodal surveillance program and how they complemented and informed the other layers of surveillance for EV-D68 and AFM could be applied to other emerging pathogens and their associated diseases.


Assuntos
Viroses do Sistema Nervoso Central , Enterovirus Humano D , Mielite , Doenças Neuromusculares , Doenças Respiratórias , Criança , Humanos , Colorado/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
7.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240591

RESUMO

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Assuntos
Proteases Virais 3C , Enterovirus Humano D , Interferon Tipo I , Transdução de Sinais , Humanos , Proteases Virais 3C/metabolismo , Antígenos Virais/metabolismo , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano D/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/metabolismo
8.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289118

RESUMO

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Assuntos
Endopeptidases , Enterovirus Humano D , Interações entre Hospedeiro e Microrganismos , Vírus Oncolíticos , Piroptose , SARS-CoV-2 , Humanos , Linhagem Celular Tumoral , COVID-19/metabolismo , COVID-19/terapia , COVID-19/virologia , Endopeptidases/genética , Endopeptidases/metabolismo , Enterovirus Humano D/enzimologia , Enterovirus Humano D/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Gasderminas/antagonistas & inibidores , Gasderminas/genética , Gasderminas/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/enzimologia , Vírus Oncolíticos/genética , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Emerg Infect Dis ; 30(1): 141-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147067

RESUMO

In a 2-year study in Leuven, Belgium, we investigated the use of wastewater sampling to assess community spread of respiratory viruses. Comparison with the number of positive clinical samples demonstrated that wastewater data reflected circulation levels of typical seasonal respiratory viruses, such as influenza, respiratory syncytial virus, and enterovirus D68.


Assuntos
Enterovirus Humano D , Influenza Humana , Vírus Sincicial Respiratório Humano , Humanos , Bélgica/epidemiologia , Águas Residuárias , Vírus Sincicial Respiratório Humano/genética
10.
Virus Res ; 339: 199284, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040125

RESUMO

Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Doenças Neuromusculares , Criança , Humanos , Enterovirus Humano D/genética , Interferon lambda , Sistema Respiratório
11.
Emerg Infect Dis ; 29(11): 2315-2324, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877582

RESUMO

Enterovirus D68 (EV-D68) causes cyclical outbreaks of respiratory disease and acute flaccid myelitis. EV-D68 is primarily transmitted through the respiratory route, but the duration of shedding in the respiratory tract is unknown. We prospectively enrolled 9 hospitalized children with EV-D68 respiratory infection and 16 household contacts to determine EV-D68 RNA shedding dynamics in the upper respiratory tract through serial midturbinate specimen collections and daily symptom diaries. Five (31.3%) household contacts, including 3 adults, were EV-D68-positive. The median duration of EV-D68 RNA shedding in the upper respiratory tract was 12 (range 7-15) days from symptom onset. The most common symptoms were nasal congestion (100%), cough (92.9%), difficulty breathing (78.6%), and wheezing (57.1%). The median illness duration was 20 (range 11-24) days. Understanding the duration of RNA shedding can inform the expected rate and timing of EV-D68 detection in associated acute flaccid myelitis cases and help guide public health measures.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Criança , Adulto , Humanos , Enterovirus Humano D/genética , Colorado/epidemiologia , Sistema Respiratório , Infecções por Enterovirus/epidemiologia , Surtos de Doenças , RNA , Infecções Respiratórias/epidemiologia
12.
Emerg Infect Dis ; 29(11): 2362-2365, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877593

RESUMO

In this retrospective study, we measured enterovirus D68 (EV-D68) genomic RNA in wastewater solids longitudinally at 2 California, USA, wastewater treatment plants twice per week for 26 months. EV-D68 RNA was undetectable except when concentrations increased from mid-July to mid-December 2022, which coincided with a peak in confirmed EV-D68 cases.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Mielite , Humanos , Enterovirus Humano D/genética , Estudos Retrospectivos , Águas Residuárias , Infecções por Enterovirus/epidemiologia , Mielite/epidemiologia , Surtos de Doenças , California/epidemiologia , RNA , Enterovirus/genética
13.
Virol Sin ; 38(5): 755-766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657555

RESUMO

Enterovirus D68 (EV-D68) can cause respiratory diseases and acute flaccid paralysis, posing a great threat to public health. Interferons are cytokines secreted by host cells that have broad-spectrum antiviral effects, inducing the expression of hundreds of interferon-stimulated genes (ISGs). EV-D68 activates ISG expression early in infection, but at a later stage, the virus suppresses ISG expression, a strategy evolved by EV-D68 to antagonize interferons. Here, we explore a host protein, suppressor of cytokine signaling 3 (SOCS3), is upregulated during EV-D68 infection and antagonizes the antiviral effects of type I interferon. We subsequently demonstrate that the structural protein of EV-D68 upregulated the expression of RFX7, a transcriptional regulator of SOCS3, leading to the upregulation of SOCS3 expression. Further exploration revealed that SOCS3 plays its role by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). The expression of SOCS3 inhibited the expression of ISG, thereby inhibiting the antiviral effect of type I interferon and promoting EV-D68 transcription, protein production, and viral titer. Notably, a truncated SOCS3, generated by deleting the kinase inhibitory region (KIR) domain, failed to promote replication and translation of EV-D68. Based on the above studies, we designed a short peptide named SOCS3 inhibitor, which can specifically bind and inhibit the KIR structural domain of SOCS3, significantly reducing the RNA and protein levels of EV-D68. In summary, our results demonstrated a novel mechanism by which EV-D68 inhibits ISG transcription and antagonizes the antiviral responses of host type I interferon.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Interferon Tipo I , Humanos , Antivirais/farmacologia , Enterovirus Humano D/genética , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Janus Quinases/metabolismo
14.
mBio ; 14(4): e0105823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37535397

RESUMO

Enterovirus D68 (EV-D68) is a nonpolio enterovirus associated with severe respiratory illness and acute flaccid myelitis (AFM), a polio-like illness causing paralysis in children. AFM outbreaks have been associated with increased circulation and genetic diversity of EV-D68 since 2014, although the virus was discovered in the 1960s. The mechanisms by which EV-D68 targets the central nervous system are unknown. Since enteroviruses are human pathogens that do not routinely infect other animal species, establishment of a human model of the central nervous system is essential for understanding pathogenesis. Here, we describe two human spinal cord organoid (hSCO)-based models for EV-D68 infection derived from induced, pluripotent stem cell (iPSC) lines. One hSCO model consists primarily of spinal motor neurons, while the another model comprises multiple neuronal cell lineages, including motor neurons, interneurons, and glial cells. These hSCOs can be productively infected with contemporary strains, but not a historic strain, of EV-D68 and produce extracellular virus for at least 2 weeks without appreciable cytopathic effect. By comparison, infection with hSCO with another enterovirus, echovirus 11, causes significant structural destruction and apoptosis. Together, these findings suggest that EV-D68 infection is not the sole mediator of neuronal cell death in the spinal cord in those with AFM and that secondary injury from the immune response likely contributes to pathogenesis. IMPORTANCE AFM is a rare condition that causes significant morbidity in affected children, often contributing to life-long sequelae. It is unknown how EV-D68 causes paralysis in children, and effective therapeutic and preventative strategies are not available. Mice are not native hosts for EV-D68, and thus, existing mouse models use immunosuppressed or neonatal mice, mouse-adapted viruses, or intracranial inoculations. To complement existing models, we report two hSCO models for EV-D68 infection. These three-dimensional, multicellular models comprised human cells and include multiple neural lineages, including motor neurons, interneurons, and glial cells. These new hSCO models for EV-D68 infection will contribute to understanding how EV-D68 damages the human spinal cord, which could lead to new therapeutic and prophylactic strategies for this virus.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Criança , Humanos , Animais , Camundongos , Medula Espinal/patologia , Paralisia/complicações , Neurônios Motores
15.
Microbiol Spectr ; 11(4): e0080123, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409968

RESUMO

Enterovirus D68 (EV-D68) is a member of the species Enterovirus D in the genus Enterovirus of the family Picornaviridae. As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Although the intrinsic restriction factors in the cell provide a frontline defense, the molecular nature of virus-host interactions remains elusive. Here, we provide evidence that the major histocompatibility complex class II chaperone, CD74, inhibits EV-D68 replication in infected cells by interacting with the second hydrophobic region of 2B protein, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. 3Cpro cleaves CD74 at Gln-125. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection. IMPORTANCE As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Here, we report that CD74 inhibits viral replication in infected cells by targeting 2B protein of EV-D68, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Humanos , Antígenos Virais , Antivirais/farmacologia , Replicação Viral
16.
Infect Dis (Lond) ; 55(10): 653-663, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368373

RESUMO

Acute Flaccid Myelitis (AFM) is a neurological condition in the anterior portion of the spinal cord and can be characterised as paraplegia (paralysis of the lower limbs), and cranial nerve dysfunction. These lesions are caused by the infection due to Enterovirus 68 (EV-D68); a member of the Enterovirus (EV) family belongs to the Enterovirus species within the Picornavirus family and a Polio-like virus. In many cases, the facial, axial, bulbar, respiratory, and extraocular muscles were affected, hence reducing the overall quality of the patient's life. Moreover, severe pathological conditions demand hospitalisation and can cause mortality in a few cases. The data from previous case studies and literature suggest that the prevalence is high in paediatric patients, but careful clinical assessment and management can decrease the risk of mortality and paraplegia. Moreover, the clinical and laboratory diagnosis can be performed by Magnetic resonance imaging (MRI) of the spinal cord followed by Reverse transcription polymerase chain reaction (rRT-PCR) and VP1 seminested PCR assay of the cerebrospinal fluid (CSF), stool, and serum samples can reveal the disease condition to an extent. The primary measure to control the outbreak is social distancing as advised by public health administrations, but more effective ways are yet to discover. Nonetheless, vaccines in the form of the whole virus, live attenuated, sub-viral particles, and DNA vaccines can be an excellent choice to treat these conditions. The review discusses a variety of topics, such as epidemiology, pathophysiology, diagnosis/clinical features, hospitalisation/mortality, management/treatment, and potential future developments.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Humanos , Criança , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/epidemiologia , Mielite/diagnóstico , Mielite/epidemiologia , Paralisia/epidemiologia , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Paraplegia/epidemiologia
17.
Antiviral Res ; 216: 105654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327878

RESUMO

Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Camundongos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Microscopia Crioeletrônica , Infecções por Enterovirus/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Doença de Mão, Pé e Boca/tratamento farmacológico , Enterovirus Humano B
18.
Diagn Microbiol Infect Dis ; 107(1): 115992, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37385072

RESUMO

Seasonal EV-D68 infections can strain medical care resources due to increased pediatric hospitalizations for respiratory illness. In this study, we examine Kansas City's 2022 EV-D68 season. Rhinovirus/enterovirus (RV/EV) positive respiratory specimens from standard of care testing were salvaged and tested by EV-D68 specific PCR. Of the 1412 respiratory specimens tested from July 1 to September 15, 2022, 346 (23%) were positive for RV/EV and EV-D68 was detected in 134/319 (42%) salvaged RV/EV positive specimens. The median age of children with EV-D68 infections was 35.2 months (IQR 16.1, 67.3), which was older than children with non-EV-D68 RV/EV infections (16 months, IQR 5, 47.8), but younger than children infected during the 2014 EV-D68 outbreak. EV-D68 infection was more likely to cause severe disease in children with asthma compared to those without asthma. Real-time EV-D68 monitoring for outbreaks could potentially improve resource utilization by hospitals and help prepare for surges of respiratory disease.


Assuntos
Asma , Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Criança , Humanos , Lactente , Estações do Ano , Kansas/epidemiologia , Prevalência , Infecções Respiratórias/epidemiologia , Asma/epidemiologia , Surtos de Doenças
19.
Microbiol Spectr ; 11(3): e0413822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125923

RESUMO

Enterovirus D68 (EV-D68) is a globally emerging pathogen causing severe respiratory illnesses mainly in children. The protease from EV-D68 could impair type I interferon (IFN-I) production. However, the role of the EV-D68 structural protein in antagonizing host antiviral responses remains largely unknown. We showed that the EV-D68 structural protein VP3 interacted with IFN regulatory factor 7 (IRF7), and this interaction suppressed the phosphorylation and nuclear translocation of IRF7 and then repressed the transcription of IFN. Furthermore, VP3 inhibited the TNF receptor associated factor 6 (TRAF6)-induced ubiquitination of IRF7 by competitive interaction with IRF7. IRF7Δ305-503 showed much weaker interaction ability to VP3, and VP3Δ41-50 performed weaker interaction ability with IRF7. The VP3 from enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) was also found to interact with the IRF7 protein. These results indicate that the enterovirus structural protein VP3 plays a pivotal role in subverting host innate immune responses and may be a potential target for antiviral drug research. IMPORTANCE EV-D68 is a globally emerging pathogen that causes severe respiratory illnesses. Here, we report that EV-D68 inhibits innate immune responses by targeting IRF7. Further investigations revealed that the structural protein VP3 inhibited the TRAF6-induced ubiquitination of IRF7 by competitive interaction with IRF7. These results indicate that the control of IRF7 by VP3 may be a mechanism by which EV-D68 represses IFN-I production.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Interferon Tipo I , Criança , Humanos , Enterovirus Humano D/fisiologia , Fator Regulador 7 de Interferon/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Antivirais/farmacologia , Antígenos Virais/metabolismo
20.
Emerg Infect Dis ; 29(6): 1258-1261, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209691

RESUMO

We observed an intense enterovirus D68 outbreak in children in southwest Finland in August-September 2022. We confirmed enterovirus D68 infection in 56 children hospitalized for respiratory illnesses and in 1 child with encephalitis but were not able to test all suspected patients. Continuing surveillance for enterovirus D68 is needed.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Infecções Respiratórias , Humanos , Criança , Lactente , Enterovirus Humano D/genética , Finlândia/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções por Enterovirus/epidemiologia , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA