Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139709

RESUMO

Cableways have been widely used in industrial areas, cities, and scenic spots due to their advantages, such as being a convenient mode of transportation, time-saving, labor-saving, and low cost, as well as offering environmental protection. To ensure the safe operation of a cableway, based on the characteristic that the velocity of the cableway bracket is approximately zero in a static deformation monitoring environment, a deformation monitoring method called zero velocity update (ZUPT)-based GNSS/IMU tightly coupled algorithm with the constraint of the Earth's rotation angular velocity was proposed. The proposed method can effectively solve the problem of a single GNSS being unable to output attitude, which is directly related to the status of wire ropes and cable cars. Meanwhile, ZUPT is used to restrain the Kalman filter's divergence when IMU is stationary. However, the improvements of ZUPT on attitude are not obvious, so the constraint of the Earth's rotation angular velocity was applied. The performance of the proposed method was evaluated through monitoring the cableway bracket of the Yimeng Mountain Tourism area in Shandong. Compared with the ZUPT-based GNSS/IMU tightly coupled algorithm (ZUPT-TC), the proposed method can further constrain the error accumulation of IMU while stationary and, therefore, it can provide reliable position and attitude information on cableway brackets.

2.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015720

RESUMO

We announce the detection of a new large jump in the phase of the free core nutation (FCN). This is only the second such large FCN phase jump in more than thirty years of FCN monitoring by means of a very long baseline interferometry (VLBI) technique. The new event was revealed and confirmed by analyzing two FCN models derived from a long-time series of VLBI observations. The jump started in 2021 and is expected to last until the late fall of 2022. The amplitude of the phase jump is expected to be approximately 3 rad, which is as much as 1.5 times larger than the first phase jump in 1999-2000. A connection of the new FCN phase jump with the recent geomagnetic jerk started in 2020 is suggested.


Assuntos
Fatores de Tempo
3.
Earth Planets Space ; 74(1): 118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915663

RESUMO

The deviation of Universal Time from atomic time, expressed as UT1-UTC, reflects the irregularities of the Earth rotation speed and is key to precise geodetic applications which depend on the transformation between celestial and terrestrial reference frames. A rapidly varying quantity such as UT1-UTC demands observation scenarios enabling fast delivery of good results. These criteria are currently met only by the Very Long Baseline Interferometry (VLBI) Intensive sessions. Due to stringent requirements of a fast UT1-UTC turnaround, the observations are limited to a few baselines and a duration of one hour. Hence, the estimation of UT1-UTC from Intensives is liable to constraints and prone to errors introduced by inaccurate a priori information. One aspect in this context is that the regularly operated Intensive VLBI sessions organised by the International VLBI Service for Geodesy and Astrometry solely use stations in the northern hemisphere. Any potential systematic errors due to this northern hemisphere dominated geometry are so far unknown. Besides the general need for stimulating global geodetic measurements with southern observatories, this served as a powerful motivation to launch the SI (Southern Intensive) program in 2020. The SI sessions are observed using three VLBI antennas in the southern hemisphere: Ht (South Africa), Hb (Tasmania) and Yg (Western Australia). On the basis of UT1-UTC results from 53 sessions observed throughout 2020 and 2021, we demonstrate the competitiveness of the SI with routinely operated Intensive sessions in terms of operations and UT1-UTC accuracy. The UT1-UTC values of the SI reach an average agreement of 32 µs in terms of weighted standard deviation when compared with the conventional Intensives results of five independent analysis centers and of 27 µs compared with the 14C04 series. The mean scatter of all solutions of the considered northern hemisphere Intensives with respect to C04 is at a comparable level of 29 µs. The quality of the results is only slightly degraded if just the baseline HtHb is evaluated. In combination with the e-transfer capabilities from Ht to Hb, this facilitates continuation of the SI by ensuring rapid service UT1-UTC provision.

4.
Surv Geophys ; 43(1): 5-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535256

RESUMO

Abstract: Fluid motion within the Earth's liquid outer core leads to internal mass redistribution. This occurs through the advection of density anomalies within the volume of the liquid core and by deformation of the solid boundaries of the mantle and inner core which feature density contrasts. It also occurs through torques acting on the inner core reorienting its non-spherical shape. These in situ mass changes lead to global gravity variations, and global deformations (inducing additional gravity variations) occur in order to maintain the mechanical equilibrium of the whole Earth. Changes in Earth's rotation vector (and thus of the global centrifugal potential) induced by core flows are an additional source of global deformations and associated gravity changes originating from core dynamics. Here, we review how each of these different core processes operates, how gravity changes and ground deformations from each could be reconstructed, as well as ways to estimate their amplitudes. Based on our current understanding of core dynamics, we show that, at spherical harmonic degree 2, core processes contribute to gravity variations and ground deformations that are approximately a factor 10 smaller than those observed and caused by dynamical processes within the fluid layers at the Earth's surface. The larger the harmonic degree, the smaller is the contribution from the core. Extracting a signal of core origin requires the accurate removal of all contributions from surface processes, which remains a challenge. Article Highlights: Dynamical processes in Earth's fluid core lead to global gravity variations and surface ground deformationsWe review how these processes operate, how signals of core origin can be reconstructed and estimate their amplitudesCore signals are a factor 10 smaller than the observed signals; extracting a signal of core origin remains a challenge.

5.
Surv Geophys ; 43(1): 107-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535257

RESUMO

Changes in the Earth's rotation are deeply connected to fluid dynamical processes in the outer core. This connection can be explored by studying the associated Earth eigenmodes with periods ranging from nearly diurnal to multi-decadal. It is essential to understand how the rotational and fluid core eigenmodes mutually interact, as well as their dependence on a host of diverse factors, such as magnetic effects, density stratification, fluid instabilities or turbulence. It is feasible to build detailed models including many of these features, and doing so will in turn allow us to extract more (indirect) information about the Earth's interior. In this article, we present a review of some of the current models, the numerical techniques, their advantages and limitations and the challenges on the road ahead.

6.
J Geod ; 95(9): 110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720453

RESUMO

We revisit the problem of modeling the ocean's contribution to rapid, non-tidal Earth rotation variations at periods of 2-120 days. Estimates of oceanic angular momentum (OAM, 2007-2011) are drawn from a suite of established circulation models and new numerical simulations, whose finest configuration is on a ∘ grid. We show that the OAM product by the Earth System Modeling Group at GeoForschungsZentrum Potsdam has spurious short period variance in its equatorial motion terms, rendering the series a poor choice for describing oceanic signals in polar motion on time scales of less than ∼ 2 weeks. Accounting for OAM in rotation budgets from other models typically reduces the variance of atmosphere-corrected geodetic excitation by ∼ 54% for deconvolved polar motion and by ∼ 60% for length-of-day. Use of OAM from the ∘ model does provide for an additional reduction in residual variance such that the combined oceanic-atmospheric effect explains as much as 84% of the polar motion excitation at periods < 120 days. Employing statistical analysis and bottom pressure changes from daily Gravity Recovery and Climate Experiment solutions, we highlight the tendency of ocean models run at a 1 ∘ grid spacing to misrepresent topographically constrained dynamics in some deep basins of the Southern Ocean, which has adverse effects on OAM estimates taken along the 90 ∘ meridian. Higher model resolution thus emerges as a sensible target for improving the oceanic component in broader efforts of Earth system modeling for geodetic purposes.

7.
J Geophys Res Planets ; 126(12): e2021JE006875, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35846556

RESUMO

Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.

8.
Sensors (Basel) ; 20(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961725

RESUMO

Large-scale laser gyroscopes have found important applications in Earth sciences due to their self-sufficient property of measurement of the Earth's rotation without any external references. In order to extend the relative rotation measurement accuracy to a better level so that it can be used for the determination of the Earth orientation parameters (EOP), we investigate the limitations in a passive resonant laser gyroscope (PRG) developed at Huazhong University of Science and Technology (HUST) to pave the way for future development. We identify the noise sources from the derived noise transfer function of the PRG. In the frequency range below 10-2Hz, the contribution of free-spectral-range (FSR) variation is the dominant limitation, which comes from the drift of the ring cavity length. In the 10-2 to 103Hz frequency range, the limitation is due to the noises of the frequency discrimination system, which mainly comes from the residual amplitude modulation (RAM) in the frequency range below 2 Hz. In addition, the noise contributed by the Mach-Zehnder-type beam combiner is also noticeable in the 0.01 to 2 Hz frequency range. Finally, possible schemes for future improvement are also discussed.

9.
Remote Sens (Basel) ; 12(2): 314, 2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36081850

RESUMO

The location of the Earth's principal axes of inertia is a foundation for all the theories and solutions of its rotation, and thus has a broad effect on many fields, including astronomy, geodesy, and satellite-based positioning and navigation systems. That location is determined by the second-degree Stokes coefficients of the geopotential. Accurate solutions for those coefficients were limited to the stationary case for many years, but the situation improved with the accomplishment of Gravity Recovery and Climate Experiment (GRACE), and nowadays several solutions for the time-varying geopotential have been derived based on gravity and satellite laser ranging data, with time resolutions reaching one month or one week. Although those solutions are already accurate enough to compute the evolution of the Earth's axes of inertia along more than a decade, such an analysis has never been performed. In this paper, we present the first analysis of this problem, taking advantage of previous analytical derivations to simplify the computations and the estimation of the uncertainty of solutions. The results are rather striking, since the axes of inertia do not move around some mean position fixed to a given terrestrial reference frame in this period, but drift away from their initial location in a slow but clear and not negligible manner.

10.
Sci Total Environ ; 693: 133448, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377377

RESUMO

Upper air and surface data from 1960 to 2016, NCEP reanalysis from 1990 to 2016, air composition data from 2015 to 2016, and data from the drift automatic weather station in the Arctic from August 2012 to February 2013 are used to analyze the heavy foggy haze in China from a global perspective. Our findings show that sensitive foggy haze in winter is located in the eastern region of China because of the comprehensive effect of multi-factor meteorological conditions and the response to climate change under global warming as follows. (1) For the past half-century, two winter monsoon airflows blow from the East Asian continent and adjacent sea to North China. The airflow in the intermediate zone (North China) between the two winter monsoon airflows generates a retained circulation owing to the Earth's rotation because wind velocities over land and sea are different and their wind intensities are weakened. The circulation retention index has been on the rise in recent years, causing a "static stability" that retains or stabilizes air masses over this area. (2) Under global warming, polar ice has shrunk to a historical lowest over the years. The melting polar ice results in explosive heating and humidification in the lower troposphere leading to increased aerosol concentrations, which is conducive to maintaining or strengthening the Arctic haze. (3) The two winter monsoon pathways run over the Eurasian continent and the surface of the adjacent Sea of Okhotsk, thus affecting North China. These results are consistent with the airflow of the pollutant conveyor belt channeling from the Arctic haze zone. As a result, the pollutant conveyor belt from the Arctic haze zone as well as the pollutant conveyor belts from West Asia and North Africa contribute substantially to the high frequency of winter foggy haze over eastern China.

11.
Surv Geophys ; 37: 643-680, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471334

RESUMO

Diurnal S[Formula: see text] tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced barotropic ocean model that dissipates its energy excess in the global abyssal ocean through a parameterized tidal conversion scheme. The use of contemporary meteorological data does, however, not guarantee accurate nutation estimates per se; two of the probed datasets produce atmosphere-ocean-driven S[Formula: see text] terms that deviate by more than 30 [Formula: see text]as (microarcseconds) from the VLBI-observed harmonic of [Formula: see text] [Formula: see text]as. Partial deficiencies of these models in the diurnal band are also borne out by a validation of the air pressure tide against barometric in situ estimates as well as comparisons of simulated sea surface elevations with a global network of S[Formula: see text] tide gauge determinations. Credence is lent to the global S[Formula: see text] tide derived from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and the operational model of the European Centre for Medium-Range Weather Forecasts (ECMWF). When averaged over a temporal range of 2004 to 2013, their nutation contributions are estimated to be [Formula: see text] [Formula: see text]as (MERRA) and [Formula: see text] [Formula: see text]as (ECMWF operational), thus being virtually equivalent with the VLBI estimate. This remarkably close agreement will likely aid forthcoming nutation theories in their unambiguous a priori account of Earth's prograde annual celestial motion.

12.
Sci Adv ; 1(11): e1500679, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26824058

RESUMO

In 2002, Munk defined an important enigma of 20th century global mean sea-level (GMSL) rise that has yet to be resolved. First, he listed three canonical observations related to Earth's rotation [(i) the slowing of Earth's rotation rate over the last three millennia inferred from ancient eclipse observations, and changes in the (ii) amplitude and (iii) orientation of Earth's rotation vector over the last century estimated from geodetic and astronomic measurements] and argued that they could all be fit by a model of ongoing glacial isostatic adjustment (GIA) associated with the last ice age. Second, he demonstrated that prevailing estimates of the 20th century GMSL rise (~1.5 to 2.0 mm/year), after correction for the maximum signal from ocean thermal expansion, implied mass flux from ice sheets and glaciers at a level that would grossly misfit the residual GIA-corrected observations of Earth's rotation. We demonstrate that the combination of lower estimates of the 20th century GMSL rise (up to 1990) improved modeling of the GIA process and that the correction of the eclipse record for a signal due to angular momentum exchange between the fluid outer core and the mantle reconciles all three Earth rotation observations. This resolution adds confidence to recent estimates of individual contributions to 20th century sea-level change and to projections of GMSL rise to the end of the 21st century based on them.

13.
Planet Sci ; 3: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27512618

RESUMO

Tides induce a semimajor axis rate of +38.08 ± 0.19 mm/yr, corresponding to an acceleration of the Moon's orbital mean longitude of -25.82 ± 0.13 "/cent2, as determined by the analysis of 43 yr of Lunar Laser Ranging (LLR) data. The LLR result is consistent with analyses made with different data spans, different analysis techniques, analysis of optical observations, and independent knowledge of tides. Plate motions change ocean shapes, and geological evidence and model calculations indicate lower rates of tidal evolution for extended past intervals. Earth rotation has long-term slowing due to tidal dissipation, but it also experiences variations for times up to about 105 yr due to changes in the moment of inertia. An analysis of LLR data also tests for any rate of change in either the speed of light c or apparent mean distance. The result is (-2.8 ± 3.4)×10-12 /yr for either scale rate or -(dc/dt)/c, or equivalently -1.0 ± 1.3 mm/yr for apparent distance rate. The lunar range does not reveal any change in the speed of light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA