Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biochem Biophys Res Commun ; 711: 149914, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38608434

RESUMO

The steroid hormone ecdysone is essential for the reproduction and survival of insects. The hormone is synthesized from dietary sterols such as cholesterol, yielding ecdysone in a series of consecutive enzymatic reactions. In the insect orders Lepidoptera and Diptera a glutathione transferase called Noppera-bo (Nobo) plays an essential, but biochemically uncharacterized, role in ecdysteroid biosynthesis. The Nobo enzyme is consequently a possible target in harmful dipterans, such as disease-carrying mosquitoes. Flavonoid compounds inhibit Nobo and have larvicidal effects in the yellow-fever transmitting mosquito Aedes aegypti, but the enzyme is functionally incompletely characterized. We here report that within a set of glutathione transferase substrates the double-bond isomerase activity with 5-androsten-3,17-dione stands out with an extraordinary specific activity of 4000 µmol min-1 mg-1. We suggest that the authentic function of Nobo is catalysis of a chemically analogous ketosteroid isomerization in ecdysone biosynthesis.


Assuntos
Aedes , Aedes/enzimologia , Aedes/metabolismo , Animais , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Especificidade por Substrato , Esteroide Isomerases/metabolismo , Esteroide Isomerases/genética , Mosquitos Vetores/metabolismo , Cetosteroides/metabolismo , Cetosteroides/química
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256143

RESUMO

Cytochrome P450s (CYP450s) are a versatile superfamily of enzymes known to undergo rapid evolution. They have important roles across growth and development pathways in crustaceans, although it is difficult to characterise orthologs between species due to their sequence diversity. Conserved CYP450s enzymes in crustaceans are those associated with ecdysteroidogenesis: synthesising and breaking down the active moult hormone, 20-hydroxyecdysone. The complex life cycle of the ornate spiny lobster, Panulirus ornatus, relies on moulting in order to grow and develop. Many of these diverse life stages have been analysed to establish a comprehensive transcriptomic database for this species. The transcripts putatively encoding for CYP450s were mapped using transcriptomic analysis and identified across growth and development stages. With the aid of phylogeny, 28 transcripts of 42 putative P. ornatus CYP450s were annotated, including the well conserved Halloween genes, which are involved in ecdysteroidogenesis. Expression patterns across the life stages determined that only a subset of the CYP450s can be detected in each life stage or tissue. Four Shed transcripts show overlapping expression between metamorphosis and adult tissues, suggesting pleotropic functions of the multiple Shed orthologs within P. ornatus.


Assuntos
Palinuridae , Animais , Palinuridae/genética , Sistema Enzimático do Citocromo P-450/genética , Muda , Metamorfose Biológica/genética , Bases de Dados Factuais
3.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371556

RESUMO

Nobo is a glutathione transferase (GST) crucially contributing to ecdysteroid biosynthesis in insects of the orders Diptera and Lepidoptera. Ecdysone is a vital steroid hormone in insects, which governs larval molting and metamorphosis, and the suppression of its synthesis has potential as a novel approach to insect growth regulation and combatting vectors of disease. In general, GSTs catalyze detoxication, whereas the specific function of Nobo in ecdysteroidogenesis is unknown. We report that Nobo from the malaria-spreading mosquito Anopheles gambiae is a highly efficient ketosteroid isomerase catalyzing double-bond isomerization in the steroids 5-androsten-3,17-dione and 5-pregnen-3,20-dione. These mammalian ketosteroids are unknown in mosquitoes, but the discovered prominent catalytic activity of these compounds suggests that the unknown Nobo substrate in insects has a ketosteroid functionality. Aminoacid residue Asp111 in Nobo is essential for activity with the steroids, but not for conventional GST substrates. Further characterization of Nobo may guide the development of new insecticides to prevent malaria.


Assuntos
Anopheles , Malária , Animais , Mosquitos Vetores , Insetos , Esteroides , Mamíferos , Cetosteroides
4.
Insect Mol Biol ; 31(6): 671-685, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35661293

RESUMO

Henosepilachna vigintioctopunctata is a serious defoliating beetle attacking Solanaceae and Cucurbitaceae plants in many Asian countries. In the present paper, we identified a putative myoglianin (myo) gene. Hvmyo was actively transcribed throughout development, from embryo to adult. RNA interference (RNAi)-aided knockdown of Hvmyo delayed larval development by more than 2 days, reduced larval body size, inhibited the growth of antennae, wings and legs and disturbed gut purge. Knockdown of Hvmyo impaired the larval-pupal transition. All the Hvmyo RNAi larvae arrested at the larval stage or formed misshapen pupae or adults. The deformed pupae and adults were partially wrapped with exuviae, bearing separated wings. Moreover, the expression levels of five ecdysteroidogenesis genes (Hvspo, Hvphm, Hvdib, Hvsad and Hvshd), a prothocicotropic hormone (PTTH)/Torso pathway gene (Hvtorso), two 20E receptor genes (HvEcR and HvUSP), and two 20E signalling genes (HvE93 and HvFTZ-F1) were as a result of HvMyo RNAi significantly lowered. Conversely, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH signalling gene HvKr-h1 was greatly enhanced. Although ingestion of 20E and Hal rescued the 20E signal, it could not alleviate larval performance and defective phenotypes. Our results suggest that Myo exerts four distinctive roles in ecdysteroidogenesis, JH production, organ growth and larva-pupa-adult transformation in H. vigintioctopunctata.


Assuntos
Besouros , Animais , Besouros/genética , Ecdisterona/metabolismo , Proteínas de Insetos/metabolismo , Metamorfose Biológica/genética , Pupa , Larva/genética , Interferência de RNA , Hormônios Juvenis/metabolismo
5.
J Insect Physiol ; 139: 104387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367434

RESUMO

Insect development is regulated by a combination of juvenile hormone (JH) and 20-hydroxyecdysone (20E). Production of both JH and 20E is regulated by transforming growth factor-ß (TGFß) signaling. TGFß can be classified into two branches, the Activin and Bone Morphogenetic Protein (BMP) pathways. In Drosophila melanogaster, BMP signaling is critical for JH synthesis, whereas Activin signal is required to generate the large pulse of 20E necessary for entering metamorphosis. However, to which extent the roles of these signals are conserved remains unknown. Here we studied the role of an Activin component Smad on X (Smox) in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata. RNA interference (RNAi)-aided knockdown of Hvsmox inhibited larval growth, and impaired larval development. All Hvmyo RNAi larvae arrested at the fourth-instar larval stage. Moreover, knockdown of Hvsmox delayed gut and Malpighian tubules remodeling. Furthermore, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH response gene HvKr-h1 was greatly enhanced. Conversely, the expression levels of an ecdysteroidogenesis gene (Hvspo), a 20E receptor gene (HvEcR) and six 20E response genes (HvBrC, HvE74, HvE75, HvE93, HvHR3 and HvHR4) were significantly lowered. Knockdown of HvMet partially restored the negative phenotypes in the Hvsmox RNAi beetles. Our results suggest that Smox exerts regulative roles in JH production, ecdysteroidogenesis and organ remodeling, thus contributing to modulate the larva-pupa-adult transformation in H. vigintioctopunctata.


Assuntos
Besouros , Ativinas/genética , Ativinas/metabolismo , Animais , Besouros/metabolismo , Drosophila melanogaster/genética , Ecdisterona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Larva , Metamorfose Biológica/genética , Pupa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
6.
Insect Biochem Mol Biol ; 127: 103491, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096212

RESUMO

Ecdysteroids are key regulators of embryonic development as well as molting and metamorphosis in insects. Although an active form of ecdysteroids, 20-hydroxyecdysone (20E) is known to be produced through ecdysteroidogenesis from cholesterol and dephosphorylation of 20E-phosphate during embryogenesis in Lepidoptera, the importance of these production mechanisms in embryonic development has been unclear. Here, we investigated the activation timing of ecdysteroidogenesis from cholesterol and 20E-phosphate dephosphorylation during early embryogenesis in non-diapause eggs of the silkmoth Bombyx mori by observing morphological development, quantifying 20E and 20E-phosphate, measuring transcripts of enzymes involved in 20E production, and detecting activity of these enzymes using egg extracts. Stage-dependent 20E fluctuation and changes in mRNA amounts of enzymes suggest that the two 20E-producing mechanisms are activated at different stages during embryogenesis. Furthermore, knockdown of a dephosphorylation enzyme delayed development at early embryogenesis, whereas knockdown of an ecdysteroidogenic enzyme delayed development at early-middle embryogenesis. These results suggest that 20E is primarily produced initially by dephosphorylation of 20E-phosphate, and then by ecdysteroidogenesis from cholesterol to induce progression of embryonic development in B. mori.


Assuntos
Bombyx/metabolismo , Ecdisteroides/metabolismo , Ecdisterona/metabolismo , Fósforo/metabolismo , Animais , Bombyx/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário
7.
Gen Comp Endocrinol ; 298: 113567, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710897

RESUMO

Blue crabs (Callinectes sapidus) undergo incremental growth involving the shedding (molting) of the old exoskeleton, and subsequent expansion and re-calcification of the newly synthesized one. The cellular events that lead to molting are triggered by steroid hormones termed ecdysteroids released from Y-organs, paired endocrine glands located in the anterior cephalothorax. The regulatory pathways leading to increased synthesis and release of ecdysteroids are not fully understood, and no transcriptome has yet been published for blue crab Y-organs. Here we report de novo transcriptome assembly and annotation for adult blue crab Y-organs, and differential gene expression (DGE) analysis between Y-organs of intermolt and premolt crabs. After trimming and quality assessment, a total of 91,819,458 reads from four cDNA libraries were assembled using Trinity to form the reference transcriptome. Trinity produced a total of 171,530 contigs coding for 150,388 predicted genes with an average contig length of 613 and an N50 of 940. Of these, TransDecoder predicted 31,661 open reading frames (ORFs), and 10,210 produced non-redundant blastx results through Trinotate annotation. Genes involved in multiple cell signaling pathways, including Ca2+ signaling, cGMP signaling, cAMP signaling, and mTOR signaling were present in the annotated reference transcriptome. DGE analysis showed in premolt Y-organs up-regulated genes involved in energy production, cholesterol metabolism, and exocytosis. The results provide insights into the transcriptome of blue crab Y-organs during a natural (rather than experimentally induced) molting cycle, and constitute a step forward in understanding the cellular mechanisms that underlie stage-specific changes in the synthesis and secretion of ecdysteroids by Y-organs.


Assuntos
Braquiúros/genética , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Muda/genética , Animais , Sinalização do Cálcio , GMP Cíclico/metabolismo , DNA Complementar/genética , Ecdisteroides/metabolismo , Glândulas Endócrinas/metabolismo , Ontologia Genética , Hormônios/metabolismo , Masculino
8.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225881

RESUMO

Prothoracicotropic hormone (PTTH) is a neuropeptide that triggers a cascade of events within the prothoracic gland (PG) cells, leading to the activation of all the crucial enzymes involved in ecdysone biosynthesis, the main insect steroid hormone. Studies concerning ecdysteroidogenesis predicted PTTH action using brain extract (BE), consisting in a complex mixture in which some components positively or negatively interfere with PTTH-stimulated ecdysteroidogenesis. Consequently, the integration of these opposing factors in steroidogenic tissues leads to a complex secretory pattern. A recombinant form of prothoracicotropic hormone (rPTTH) from the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae) was expressed and purified to perform in vitro tests in a standard and repeatable manner. A characterization of rPTTH primary and secondary structures was performed. The ability of rPTTH and H. virescens BE to stimulate ecdysteroidogenesis was investigated on the third day of fifth larval stage. rPTTH activity was compared with the BE mixture by enzyme immunoassay and western blot, revealing that they equally stimulate the production of significant amount of ecdysone, through a transduction cascade that includes the TOR pathway, by the phosphorylation of 4E binding protein (4E-BP) and S6 kinase (S6K), the main targets of TOR protein. The results of these experiments suggest the importance of obtaining a functional pure hormone to perform further studies, not depending on the crude brain extract, composed by different elements and susceptible to different uncontrollable variables.


Assuntos
Ecdisteroides/biossíntese , Hormônios de Inseto/farmacologia , Mariposas/metabolismo , Extratos de Tecidos/farmacologia , Animais , Encéfalo , Hormônios de Inseto/isolamento & purificação , Mariposas/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30576801

RESUMO

Crustacean growth is characterized by molting, whereby the old exoskeleton is shed and replaced by a new and larger version. The cellular events that lead to molting are driven by steroid hormones (ecdysteroids) secreted by paired endocrine glands (Y-organs). Between molts, ecdysteroid production is suppressed by a polypeptide molt-inhibiting hormone (MIH) released from neurosecretory cells in the eyestalks. Although a decrease in the MIH titer precedes the upsurge in ecdysteroidogenesis, it is hypothesized that a positive regulatory signal is also required for full activation of Y-organs. Existing data point to an intracellular Ca2+ signal. Ca2+ signaling is dependent on a tightly regulated Ca2+ gradient, achieved through membrane transport proteins. One such protein, the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), pumps Ca2+ from cytosol to the lumen of the ER. We have recently cloned from Y-organs of the blue crab (Callinectes sapidus) a cDNA encoding a putative Cas-SERCA protein. In studies reported here, quantitative PCR (QPCR) was used to quantify Cas-SERCA transcript abundance in Y-organs during a molting cycle, and radioimmunoassay was used to quantify ecdysteroids in hemolymph. The abundance of the Cas-SERCA transcript in Y-organs increased gradually during pre-molt. Similarly, the level of ecdysteroids in hemolymph increased during pre-molt. The results are consistent with the hypothesis that Cas-SERCA functions to maintain Ca2+ homeostasis in Y-organs. Cas-SERCA transcript abundance also changed in several non-ecdysteroidogenic tissues during a molting cycle. The pattern of change differed among tissues suggesting a functional role for SERCA in each.


Assuntos
Proteínas de Artrópodes/genética , Crustáceos/fisiologia , Ecdisteroides/metabolismo , Hemolinfa/metabolismo , Muda , RNA Mensageiro/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Crustáceos/enzimologia , Derme/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo
10.
Front Physiol ; 9: 1678, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534083

RESUMO

Polydnaviruses (PDVs) are obligate symbionts of endoparasitoid wasps, which exclusively attack the larval stages of their lepidopteran hosts. The Polydnavirus is injected by the parasitoid female during oviposition to selectively infect host tissues by the expression of viral genes without undergoing replication. Toxoneuron nigriceps bracovirus (TnBV) is associated with Toxoneuron nigriceps (Hymenoptera: Braconidae) wasp, an endoparasitoid of the tobacco budworm larval stages, Heliothis virescens (Lepidoptera: Noctuidae). Previous studies showed that TnBV is responsible for alterations in host physiology. The arrest of ecdysteroidogenesis is the main alteration which occurs in last (fifth) instar larvae and, as a consequence, prevents pupation. TnBV induces the functional inactivation of H. virescens prothoracic glands (PGs), resulting in decreased protein synthesis and phosphorylation. Previous work showed the involvement of the PI3K/Akt/TOR pathway in H. virescens PG ecdysteroidogenesis. Here, we demonstrate that this cellular signaling is one of the targets of TnBV infection. Western blot analysis and enzyme immunoassay (EIA) showed that parasitism inhibits ecdysteroidogenesis and the phosphorylation of the two targets of TOR (4E-BP and S6K), despite the stimulation of PTTH contained in the brain extract. Using a transcriptomic approach, we identified viral genes selectively expressed in last instar H. virescens PGs, 48 h after parasitization, and evaluated expression levels of PI3K/Akt/TOR pathway genes in these tissues. The relative expression of selected genes belonging to the TOR pathway (tor, 4e-bp, and s6k) in PGs of parasitized larvae was further confirmed by qRT-PCR. The down-regulation of these genes in PGs of parasitized larvae supports the hypothesis of TnBV involvement in blocking ecdysteroidogenesis, through alterations of the PI3K/Akt/TOR pathway at the transcriptional level.

11.
Gene ; 673: 12-21, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29886036

RESUMO

Existing data indicate that a Ca2+ signal stimulates ecdysteroid hormone production by crustacean molting glands (Y-organs). Ca2+ signaling is dependent on a tightly regulated Ca2+ gradient, with intracellular free Ca2+ maintained at a low basal level (typically sub-micromolar). This is achieved through the action of proteins intrinsic to the plasma membrane and the membranes of organelles. One such protein, the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), pumps Ca2+ from cytosol to the lumen of the endoplasmic reticulum. As a step toward understanding Ca2+-mediated regulation of ecdysteroidogenesis, we have begun investigating Ca2+ transport proteins in Y-organs. In studies reported here, we used a PCR-based strategy to clone from Y-organs of the blue crab (Callinectes sapidus) a cDNA encoding a putative SERCA protein. The cloned Cas-SERCA cDNA (3806 bp) includes a 3057-bp open reading frame that encodes a 1019-residue protein (Cas-SERCA). The conceptually translated protein has a predicted molecular mass of 111.42 × 103 and contains all signature domains of an authentic SERCA, including ten transmembrane domains and a phosphorylation site at aspartate 351. A homology model of Cas-SERCA closely resembles models of related SERCA proteins. Phylogenetic analysis shows Cas-SERCA clusters with SERCA proteins from other arthropods. An assessment of tissue distribution indicates the Cas-SERCA transcript is widely distributed across tissues. Studies using quantitative PCR showed Cas-SERCA transcript abundance increased significantly in Y-organs activated by eyestalk ablation, a pattern consistent with the hypothesis that Cas-SERCA functions to maintain Ca2+ homeostasis in Y-organs.


Assuntos
Braquiúros/genética , Muda/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Cálcio/metabolismo , Clonagem Molecular , Primers do DNA , Homeostase , Conformação Molecular , Filogenia , RNA/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Especificidade da Espécie , Distribuição Tecidual
12.
J Insect Physiol ; 107: 57-67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29454612

RESUMO

Post-embryonic development and molting in insects are regulated by endocrine changes, including prothoracicotropic hormone (PTTH)-stimulated ecdysone secretion by the prothoracic glands (PGs). In Lepidoptera, two pathways are potentially involved in PTTH-stimulated ecdysteroidogenesis, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B/target of rapamycin (PI3K/Akt/TOR). We investigated the potential roles of both these pathways in Heliothis virescens ecdysteroidogenesis. We identified putative proteins belonging to MAPK and PI3K/Akt/TOR signaling cascades, using transcriptomic analyses of PGs from last (fifth) instar larvae. Using western blots, we measured the phosphorylation of 4E-BP and S6K proteins, the main targets of TOR, following the in vitro exposure of PGs to brain extract containing PTTH (hereafter referred to as PTTH) and/or the inhibitors of MAPK (U0126), PI3K (LY294002) or TOR (rapamycin). Next, we measured ecdysone production, under the same experimental conditions, by enzyme immunoassay (EIA). We found that in Heliothis virescens last instar larvae, both pathways modulated PTTH-stimulated ecdysteroidogenesis. Finally, we analyzed the post-embryonic development of third and fourth instar larvae fed on diet supplemented with rapamycin, in order to better understand the role of the TOR pathway in larval growth. When rapamycin was added to the diet of larvae, the onset of molting was delayed, the growth rate was reduced and abnormally small larvae/pupae with high mortality rates resulted. In larvae fed on diet supplemented with rapamycin, the growth of PGs was suppressed, and ecdysone production and secretion were inhibited. Overall, the in vivo and in vitro results demonstrated that, similarly to Bombyx mori, MAPK and PI3K/Akt/TOR pathways are involved in PTTH signaling-stimulated ecdysteroidogenesis, and indicated the important role of TOR protein in H. virescens systemic growth.


Assuntos
Ecdisteroides/metabolismo , Hormônios de Inseto/metabolismo , Mariposas/fisiologia , Animais , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Transdução de Sinais/fisiologia
13.
Insect Mol Biol ; 26(3): 286-297, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28121379

RESUMO

In this study, we identified ecdysteroidogenic enzymes in the cabbage armyworm, Mamestra brassicae, and demonstrated reduced expression of these genes during diapause. Some insects employ a temporary developmental arrest, diapause, to survive in severe environments. The titres of the moulting hormone ecdysteroid were reduced in diapause pupae of M. brassicae; therefore, ecdysteroidogenesis might be suppressed by a diapause-specific mechanism. To clarify expression changes of ecdysteroidogenic enzyme genes during diapause in M. brassicae, we first identified the genes for seven ecdysteroidogenic enzymes: Neverland, Non-molting glossy (Nm-g), CYP307A1 (Spook), CYP306A1 (Phantom), CYP302A1 (Disembodied), CYP315A1 (Shadow) and CYP314A1 (Shade). Enzymatic assays using heterologous expression in Drosophila Schneider 2 (S2) cells and analysis of mRNA distribution indicated that the identified genes were ecdysteroidogenic enzymes of M. brassicae. Expression levels of these ecdysteroidogenic enzyme genes were compared between prothoracic glands in different pupal stages throughout diapause. Immediately after pupation, diapause-destined pupae showed similar expression levels of ecdysteroidogenic enzyme genes to those of nondiapause pupae. All of these genes showed reduced gene expression after diapause initiation. Expression was immediately increased in diapause-destined pupae at the postdiapause quiescence phase. These results indicate that reduced expression of ecdysteroidogenic enzyme genes suppresses ecdysteroidogenesis and maintains developmental arrest during diapause.


Assuntos
Diapausa de Inseto , Ecdisteroides/biossíntese , Mariposas/enzimologia , Animais , Linhagem Celular , Feminino , Expressão Gênica , Masculino , Mariposas/genética , Pupa/enzimologia
14.
G3 (Bethesda) ; 7(2): 467-479, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27974438

RESUMO

In Drosophila melanogaster larvae, the ring gland (RG) is a control center that orchestrates major developmental transitions. It is a composite organ, consisting of the prothoracic gland, the corpus allatum, and the corpora cardiaca, each of which synthesizes and secretes a different hormone. Until now, the RG's broader developmental roles beyond endocrine secretion have not been explored. RNA sequencing and analysis of a new transcriptome resource from D. melanogaster wandering third instar larval RGs has provided a fascinating insight into the diversity of developmental signaling in this organ. We have found strong enrichment of expression of two gene pathways not previously associated with the RG: immune response and fatty acid metabolism. We have also uncovered strong expression for many uncharacterized genes. Additionally, RNA interference against RG-enriched cytochrome p450s Cyp6u1 and Cyp6g2 produced a lethal ecdysone deficiency and a juvenile hormone deficiency, respectively, flagging a critical role for these genes in hormone synthesis. This transcriptome provides a valuable new resource for investigation of roles played by the RG in governing insect development.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Larva/genética , Transcriptoma/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/genética , Ecdisona/metabolismo , Ácidos Graxos/genética , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata/genética , Larva/crescimento & desenvolvimento , Oxirredução , Interferência de RNA
15.
J Insect Physiol ; 93-94: 94-104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662806

RESUMO

Early steps of the biosynthetic pathway of the insect steroid hormone ecdysone remains the "Black Box" wherein the characteristic ecdysteroid skeleton is built. 7-Dehydrocholesterol (7dC) is the precursor of uncharacterized intermediates in the Black Box. The oxidation step at C-3 has been hypothesized during conversion from 7dC to 3-oxo-2,22,25-trideoxyecdysone, yet 3-dehydroecdysone is undetectable in some insect species. Therefore, we first confirmed that the oxidation at C-3 occurs in the fruitfly, Drosophila melanogaster using deuterium-labeled cholesterol. We next investigated the molting activities of candidate intermediates, including oxidative products of 7dC, by feeding-rescue experiments for Drosophila larvae in which an expression level of a biosynthetic enzyme was knocked down by the RNAi technique. We found that the administration of cholesta-4,7-dien-3-one (3-oxo-Δ4,7C) could overcome the molting arrest of ecdysteroid-defective larvae in which the expression level of neverland was reduced. However, feeding 3-oxo-Δ4,7C to larvae in which the expression levels of shroud and Cyp6t3 were reduced inhibited molting at the first instar stage, suggesting that this steroid could be converted into an ecdysteroid-antagonist in loss of function studies of these biosynthetic enzymes. Administration of the highly conjugated cholesta-4,6,8(14)-trien-3-one, oxidized from 3-oxo-Δ4,7C, did not trigger molting of ecdysteroid-defective larvae. These results suggest that an oxidative product derived from 7dC is converted into ecdysteroids without the formation of this stable conjugated compound. We further found that the 14α-hydroxyl moiety of Δ4-steroids is required to overcome the molting arrest of larvae in loss of function studies of Neverland, Shroud, CYP6T3 or Spookier, suggesting that oxidation at C-14 is indispensable for conversion of these Δ4-steroids into ecdysteroids via 5ß-reduction.


Assuntos
Drosophila melanogaster/fisiologia , Ecdisona/biossíntese , Ecdisteroides/metabolismo , Animais , Vias Biossintéticas , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metamorfose Biológica , Oxirredução
16.
J Insect Physiol ; 80: 42-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25907890

RESUMO

Disruption of the appropriate balance between juvenile hormone (JH) and ecdysteroids causes abnormal insect development. The application of a JH analog (JHA) during the early days of the final (fifth) instar induces dauer larvae with low ecdysteroid titers in insects, but the mechanism that underlies the action of JHA remains unclear. In this study, we clarified the negative effects of JHA on ecdysteroidogenic enzymes. JHA application to Bombyx mori larvae during the early stage of the fifth instar suppressed the expression of four enzymes, i.e., neverland (nvd), spook, phantom, and disembodied but not non-molting glossy and shadow. Furthermore, JHA application reduced the amount of 7-dehydrocholesterol, a metabolite produced by Nvd, in both the prothoracic glands and hemolymph, indicating JHA can disrupt ecdysteroidogenic pathway from the first step. Neck ligation resulted in increased nvd expression, whereas JHA application reversed this increase. These results suggest that the endogenous JH represses ecdysteroidogenesis during the early days in final instar larvae. Neck ligation and JHA application had no substantial effects on the expression of a transcription factor, ftz-f1, or a prothoracicotropic hormone receptor, torso; therefore, the inhibitory regulation of JHA may not involve these factors. Further analysis is required to clarify the regulation of JHA in ecdysteroidogenesis, but this study showed that JHA, and probably endogenous JH, can suppress the transcription of four of six ecdysteroidogenic enzymes. This regulation may be essential for maintaining the appropriate balance between JH and ecdysone during insect development.


Assuntos
Bombyx/enzimologia , Bombyx/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Animais , Bombyx/genética , Bombyx/metabolismo , Ecdisteroides/metabolismo , Proteínas de Insetos/genética , Hormônios Juvenis/química , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica , Estrutura Molecular
17.
Insect Sci ; 22(2): 191-202, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24282064

RESUMO

Post-embryonic development of insects is highly dependent on ecdysteroid hormone 20-hydroxyecdysone. Halloween gene spookier (spok, cyp307a2) has been documented to be involved in ecdysteroidogenesis in Drosophila melanogaster and Bombyx mori. We describe here the cloning and characterization of Halloween gene spookier (Lsspok, Lscyp307a2) in the small brown planthopper Laodelphax striatellus, a hemipteran insect species. LsSPOK has three insect-conserved P450 motifs, that is, Helix-K, PERF motif and heme-binding domain. Temporal and spatial expression patterns of Lsspok were evaluated by quantitative polymerase chain reaction. Through the fouth-instar and the early fifth-instar stages, Lsspok showed two expression peaks in the second- and fifth-day fourth-instar nymphs, and two troughs in the first-day fourth and fifth instars. On day 5 of the fourth-instar nymphs, Lsspok clearly had a high transcript level in the thorax where prothoracic glands were located. Dietary introduction of double-stranded RNA of Lsspok in the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development. Ingestion of 20-hydroxyecdysone in Lsspok-dsRNA-exposed nymphs did not increase Lsspok expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects and LsSPOK is responsible for specific steps in ecdysteroidogenesis in L. striatellus.


Assuntos
Hemípteros/genética , Proteínas de Insetos/genética , Interferência de RNA , Sequência de Aminoácidos , Animais , Ecdisterona/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Insetos , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Ninfa/genética , Ninfa/crescimento & desenvolvimento , RNA de Cadeia Dupla/administração & dosagem , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Alinhamento de Sequência
18.
Pest Manag Sci ; 71(2): 199-206, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24648012

RESUMO

BACKGROUND: Laodelphax striatellus is an economically important rice pest in China. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. The cytochrome P450 monooxygenase Shadow (Sad) plays a critical role in ecdysteroidogenesis. Here, tests were conducted to establish whether Lssad was a potential target gene for RNA-interference-based management of L. striatellus. RESULTS: Lssad was cloned and characterised. LsSad had Helix-C, Helix-I, Helix-K, PERF and haem-binding motifs. Lssad is expressed at a higher level in the thorax, where prothoracic glands are located, compared with the level in the head or abdomen. It showed two expression peaks in day 2 and day 4-5 fourth-instar nymphs, and two troughs in day 1 fourth and fifth instars. Oral delivery of double-stranded RNA (dsRNA) of Lssad at the nymph stage successfully knocked down the expression of the target gene, reduced the expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development in a dose-dependent manner. Ingestion of 20-hydroxyecdysone in Lssad-dsRNA-exposed nymphs did not increase Lssad expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. CONCLUSIONS: The ecdysteroidogenic pathway is conserved in L. striatellus. Lssad can serve as a possible target for dsRNA-based pesticides for planthopper control.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , RNA de Cadeia Dupla/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Hemípteros/crescimento & desenvolvimento , Hemípteros/metabolismo , Controle de Insetos , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Ninfa , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
19.
Insect Sci ; 22(6): 707-18, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24954278

RESUMO

Ecdysteroid hormone 20-hydroxyecdysone plays fundamental roles in insect postembryonic development and reproduction. Several cytochrome P450 mono-oxygenases (CYPs), encoded by the Halloween genes, have been documented to be involved in ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. Here the putative Halloween gene Phantom (Phm, cyp306a1) from a hemipteran insect species, the small brown planthopper Laodelphax striatellus, was cloned. LsPHM shows five insect conserved P450 motifs, that is, Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of LsPhm were evaluated by quantitative polymerase chain reaction. Through the fourth-instar and the early fifth-instar stages, LsPhm showed two expression peaks in day 2 and days 4-5 fourth-instar nymphs, and three troughs in day 1 and 3 fourth instars and day 1 fifth instars. On day 5 of the fourth-instar nymphs, LsPhm clearly had a high transcript level in the thorax where the prothoracic glands were located. Dietary introduction of double-stranded RNA (dsRNA) of LsPhm at the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene and caused a higher nymphal mortality rate and delayed development. Ingestion of 20-hydroxyecdysone on LsPhm-dsRNA-exposed nymphs did not increase LsPhm expression level, but almost completely rescued the LsEcR mRNA level, and relieved the negative effects on survival and development. Thus, our data suggest that the putative LsPhm encodes a functional 25-hydroxylase that catalyzes the biosynthesis of ecdysteroids in L. striatellus.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Ecdisteroides/metabolismo , Hemípteros/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila , Técnicas de Silenciamento de Genes , Hemípteros/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Oxigenases de Função Mista , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
Insect Mol Biol ; 23(5): 632-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24989229

RESUMO

Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata.


Assuntos
Besouros/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Receptores de Esteroides/genética , Sequência de Aminoácidos , Animais , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ecdisona/metabolismo , Ecdisterona/metabolismo , Feminino , Hidroxilação , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Óvulo/metabolismo , Filogenia , Pupa/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Esteroides/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA