RESUMO
Clarifying the matching degree and the trade-offs and synergies between supply and demand of ecosystem services is of significance for scientific division of management zoning and sustainable urban development. We calculated the supply and demand of ecosystem services at the sub-district (town) scale of Taiyuan based on multi-source data, explored the coldspots and hotspots area of the supply-demand ratio and the trade-offs and synergies of six ecosystem services using the Getis-Ord Gi* tool and correlation analysis, and proposed strategies based on the regional characteristics of natural-resource and socio-economy. Results showed the distribution of the supply and demand of ecosystem services had a spatial heterogeneity. In terms of supply, the area with high supply of carbon storage, air purification, thermal environment regulation and recreation service were located in the east and west parts, that of soil conservation in the west and water yield in the south part. In terms of demand, the demand distribution of carbon storage, thermal environment regulation, water yield and recreation service were characterized by high in the central and east-south area, and low in the periphery, and high demand of air purification in south and north parts, soil conservation in west part. There were substantial mismatches between the demand and supply of ecosystem services. The risk levels of the supply and demand of six ecosystem services showed a decreasing pattern from the Fenhe River to the eastern and western mountains. There were trade-offs between water yield and other five ecosystem services in their supply, while air purification and soil conservation had trade-offs with other four ecosystem services in demand. Based on the regional ecological management framework, we divided the study area into three primary zones and eight secondary zones, and proposed differentiated ecological management strategies to provide theoretical support for ecological zoning. The results could provide a basis for balancing the relationship of supply and demand of ecosystem services and promoting the sustainable development of the city.
Assuntos
Cidades , Conservação dos Recursos Naturais , Ecossistema , China , Ecologia , Monitoramento AmbientalRESUMO
Phytoremediation is an environmentally friendly alternative to traditional remediation technologies, notably for soil restoration and agricultural sustainability. This strategy makes use of marginal areas, incorporates biofortification processes, and expands crop alternatives. The ecological and economic benefits of phytoremediation are highlighted in this review. Native plant species provide cost-effective advantages and lower risks, while using invasive species to purify pollutants might be a potential solution to the dilemma of not removing them from the new habitat. Thus, strict management measures should be used to prevent the overgrowth of invasive species. The superior advantages of phytoremediation, including psychological and social improvements, make it a powerful tool for both successful cleanup and community well-being. Its ability to generate renewable biomass and adapt to a variety of uses strengthens its position in developing the bio-based economy. However, phytoremediation faces severe difficulties such as complex site circumstances and stakeholder doubts. Overcoming these challenges necessitates a comprehensive approach that balances economic viability, environmental protection, and community welfare. Incorporating regulatory standards such as ASTM and ISO demonstrates a commitment to long-term environmental sustainability, while also providing advice for unique nation-specific requirements. Finally, phytoremediation may contribute to a pleasant coexistence of human activity and the environment by navigating hurdles and embracing innovation.
Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Humanos , Agricultura/métodos , Ecossistema , Poluentes do Solo/metabolismoRESUMO
In order to enhance ecosystem stability and promote sustainable regional ecological, social, and economic development, it is crucial to explore the coupling relationship between ecosystem service supply and demand and the resilience of ecosystem, so as to propose scientific ecological management zones and strategies. Taking the vulnerable alpine ecosystem in Gannan Tibetan Autonomous Prefecture (Gannan Prefecture) as the study area, this paper comprehensively utilized multi-source data, grid analysis, ecosystem service supply and demand estimation model, and coupled coordination model to analyze the spatio-temporal differentiation and coordination pattern of ecosystem service supply and demand in the study area from 2000 to 2020. With the assistance of the Analytic Hierarchy Process (AHP), the ecosystem resilience index system was constructed to evaluate the regional ecological resilience. The results reveal the following: (1) In the past 20 years, the ecosystem service supply and resilience in Gannan Prefecture showed a fluctuating upward trend, and the demand continued to grow steadily. Their spatial differentiation were obvious, but the pattern remained stable. (2) There was a moderate incoordination indicated by the average coordination degree of the supply and demand coupling of ecosystem services, which rangeed between 0.3 and 0.4. (3) Gannan Prefecture was split into three ecological management zones, considering the spatial distribution of ecosystem service supply and demand, as well as resilience. Through system function monitoring and other measures, the ecological conservation zone will rely on its high resilience to support the restoration and self-sufficiency of the system, ensuring the stability and well-being of the ecosystem. The primary objectives of general protected zone includes environmental preservation, strict regulations, and the prevention of human intervention. To enhance their ecological background, key restoration zone must intensify the implementation of ecological restoration initiatives. To address the needs of the locals, strategies such as ecological compensation, optimizing the land use structure, and fostering the growth of environmentally friendly companies can be implemented simultaneously.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , EcologiaRESUMO
Establishing ecological management zones based on the supply-demand relationship of ecosystem services (ESs) is essential for fostering sustainable development within social-ecological systems and improving human well-being. In this study, the spatial pattern between supply and demand in five ESs (grain production (GP), carbon sequestration (CS), soil conservation (SC), water conservation (WC), and habitat quality (HQ)) is analyzed using the ESs supply-demand ratio (ESDR) method, the spatial autocorrelation method, and the coupled coordination degree model. Zoning is performed according to the differences in their spatial combinations, and differential zoning management policies are proposed. The following results were obtained: (1) In terms of the ESDR, except for a slight increase in GP surplus from 2010 to 2020, there is a decline in the surplus of the other four ESs. (2) CS, WC, and HQ are dominated by cluster types LH and HL. GP and SC are dominated by cluster types HH and LL. The average value of the coupling coordination degree (CCD) of comprehensive ESs supply and demand show five types: moderate disharmony, slight disharmony, near disharmony, basic coordination, and slight coordination. (3) Based on the multiple spatial heterogeneity of ESs supply and demand, differentiated ecological management strategies are proposed at the grid scale. Overall, this study discover the spatial pattern of mismatch between the supply and demand of ecosystem services (ESs) in mountainous urban areas. This contribution enhances the discourse surrounding sustainable development theory and advances research on the coupling of social-ecological systems. Furthermore, it offers valuable insights for the formulation of sustainable ecological management policies tailored to mountainous urban settings.
RESUMO
Ecological management zones (EMZs) are pivotal in improving the management of ecosystem services (ESs) and promoting sustainable regional development. In this study, we developed a comprehensive framework aimed at identifying EMZs and substantiating their efficacy through the amalgamation of historical evolutionary patterns and future trends. We applied this framework to Beijing, China, and selected five vital ESs for the study area namely, water yield (WY), carbon sequestration (CS), habitat quality (HQ), soil conservation (SC) and water purification (WP). The framework involves two key components. Firstly, the identification of EMZs is based on the historical evolution of five types of ESs and the dynamic assessment of ES bundles. Subsequently, it enables a simulation of various scenarios to predict future alterations in land use and ESs, thereby validating the effectiveness of the identified EMZs. Our findings reveal notable spatial heterogeneity among different ESs, and that CS, HQ, SC, and WP exhibited synergies, while WY and showed trade-offs with the remaining four types of ESs. Based on an analysis of ES bundle evolution trajectories, we identified four types of EMZs: ecological conservation zone, ecological restoration zone, ecological transition zone and sustainable construction zone. Through strategic EMZ planning, it becomes possible to augment the area of forestland and grassland, alleviate the contradiction between arable land and construction land, and enhance the supply of various ESs. The proposed framework not only offers a novel perspective on the scientific management of ESs but also furnishes decision-makers and planners with an intuitive understanding of the tangible benefits associated with EMZ planning.
RESUMO
River ecosystems, acting as pivotal conduits linking terrestrial, marine, and atmospheric realms, have faced significant disturbances due to human exploitation of their resources. Recent years have witnessed a heightened intensification of human activities, adversely affecting the equilibrium of water ecosystems. To systematically study the various factors that affect river ecosystems under human activities, we introduce a universally applicable approach that considers the diversity of watersheds, biogenic elements, and human activities. Using this method, this application uncovers the sensitive human activity types, biogenic factors, and species significantly influencing river biodiversity within the study area. Incorporating statistical modelling, sensitivity screening, and advanced correlation analyses within a random forest regression framework, Sensitive biogenic elements and biological types affected by human activities were identified in typical watersheds, and the stability of different aquatic ecosystems was evaluated. Suggestions for watershed management measures were proposed When human activities affect the degree of water resource development and utilization, the forms of sensitive biogenic elements include DIC and Tsi; When human activities affect the discharge of pollutants into rivers, the forms of sensitive biogenic elements include TP, PP, and DEP, and the ratio composition includes TC: TN, TC: TP, TP: TSi, and TN: TP, This study pioneers a novel method for assessing human impacts on river ecosystems and successfully applies this approach to inform management decisions for river segments and tributaries in the middle and upper reaches of the Yangtze River basin. thereby enhancing our understanding of the consequences of human-induced impacts on biodiversity.
Assuntos
Ecossistema , Rios , Humanos , Monitoramento Ambiental , Biodiversidade , Água , ChinaRESUMO
Evaluating the ecosystem health of riparian zones is helpful for decision-makers to formulate appropriate management measures. However, there are few methods for such evaluation which account for both the human requirements and ecological aspects of riparian zones. To address this, we created a Pressure-State(Vigor-Organization-Resilience)-Response framework for evaluating the ecosystem health of the riparian zone of the Yangtze River in Jiangsu Province, a region experiencing intense land use changes. Evaluation indicators, including land use change and ecosystem services, were selected. The comprehensive index method was used to calculate the evaluation indicators of ecosystem health, namely pressure, state, and response, and the comprehensive evaluation indicator itself. Using the cold and hot spot analysis, we also analyzed the spatial heterogeneity of ecosystem health in the riparian zone, constructed an ecological management pattern, and proposed corresponding management and protection measures. The results show that (1) from 2010 to 2020, construction land in the study area increased by more than 20%, and all studied land types underwent some degree of conversion to construction land, with cultivated land and water bodies being the main focus of conversion. (2) In 2020, the average ecosystem health in the riparian zone was normal, with a spatial distribution characterized by "high dispersion and low clustering"; and (3) according to the results of the ecosystem health evaluation and cold and hot spot analysis, key areas for stronger ecological protection were identified and, based on this, a number of management recommendations were proposed.
Assuntos
Ecossistema , Rios , Humanos , Monitoramento Ambiental , China , Conservação dos Recursos Naturais/métodosRESUMO
The measurement of carbon and carbon-related ecosystem services (CCESs) has garnered considerable global attention, primarily due to dualcarbon goals, which are crucial for the rational allocating of ecosystem service (ES) resources and the enhancement of terrestrial carbon sinks. This study developed a novel research framework on CCESs to quantitatively measure carbon storage (CS), food production (FS), habitat quality (HQ), soil conservation (SC), and water yield (WY), and examined the spatiotemporal patterns of the supply-demand and trade-off/synergy processes related to CCESs in the Huaihe River Ecological Economic Belt (HREEB). The findings are as follows: (1) From 2000 to 2020, the supply-demand of the CCESs generally increased, except for carbon storage and food demand. Overall, the supply level of the CCESs exceeds the demand level, with a median ratio of supply and demand ratio (ESDR) of 1.13. (2) During the study period, the synergy relationship of the CCESs is mainly determined by the supply side of the CS-HQ and CS-SC, while on the demand side, it is determined by the CD- FD. And the ESDR of all C-related ecosystem services showed a significant synergy strengthening with CS in the HREEB. (3) Spatially, "high-low" spatial matching of the ESDR decreased, suggesting a gradual reduction in the spatial mismatch of CCESs. (4) We identified seven ecological functional zones and proposed corresponding strategies for promoting ecological management. Our research emphasized the spatiotemporal patterns of supply and demand imbalance in CCESs and the spatial optimization paths of trade-offs/synergies, providing valuable insights for achieving regional dualcarbon goals.
RESUMO
Ecosystem services refer to the benefits that human obtain from natural ecosystems. Different ecosystem services are generated by the combination of social-ecological driving factors, and exhibit different spatial patterns across scales. The complex relationships and driving mechanisms among ecosystem services under different spatial scales remain unclear. With Shaoguan City from Guangdong Province as the study area, we analyzed the spatial patterns and relationships of four ecosystem services and their trade-offs/synergies (TOSs), quantified their responses to seven social-ecological drivers at the kilometer grid scale and sub-watershed scale, and proposed regional ecologi-cal management and planning strategies for cross-scale sustainable development. The results showed that the spatial distribution of ecosystem services in Shaoguan City exhibited spatial clustering and cross-scale variations. Habitat quality, water yield, and carbon storage exhibited similar spatial distribution pattern. High supply was mainly distributed in mountainous areas in the east, north, west, and south, while weak supply was distributed in plain areas in the central, northwest, south and northeast. In addition, the spatial clustering of these services intensified with increasing spatial scale. Ecosystem services displayed synergistic relationships at both spatial scales, and the intensity of the synergy changed with scale. At both the kilometer grid and sub-watershed scale, the primary drivers for ecosystem services were the normalized vegetation index and digital elevation model. The main driver for TOSs was the mean annual temperature at the kilometer grid scale, while it was the mean annual evapotranspiration at the sub-watershed scale. Based on the supply levels of ecosystem services, the study area could be divided into five distinct ecosystem service bundles, i.e., mountain ecological balance zone, forest ecological conservation zone, urban forest maintenance zone, ecologically sensitive zone, and ecological risk zone. All bundles exhibited both spatial heterogeneity and cross-scale variations. We integrated the cross-scale variations of four representative ecosystem services and their complex interactions and driving mechanisms in Shaoguan City into spatial planning to facilitate the sustainable ecosystem management across multiple scales, which could offer valuable references for the construction of ecological civilization in other regions.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Florestas , Desenvolvimento Sustentável , ChinaRESUMO
As environmental issues on a global scale continue to worsen, all regions are pursuing ecological management and sustainable development strategies. The coordinated development of the "vegetation-air-water" environment is one of the most essential research topics in ecological governance. The purpose of this paper is to develop an evaluation system for the development of environmental governance in Shaanxi Province, as well as to evaluate the benefits of environmental governance in Shaanxi Province from 2012 to 2021 and its influencing factors. An index system for the coordinated development of "vegetation-atmosphere-water" is constructed, and the benefits and influencing factors of environmental governance are comprehensively analysed by using comprehensive analysis methods such as the coupled coordination model of the system and entropy weight TOPSIS. The results indicate that the development trend of the coupling coordination degree has evolved through the stages of "uncoordinated development at the early stage of governance, transformed development at the middle stage of governance, and coordinated development at the first success stage of governance." In addition, we identify the obstacles to the coordinated development of the environment and suggest appropriate countermeasures. The efficacy of environmental policy governance provides recommendations for future enhancements. It is important to note that ecological governance is influenced by both policy and nature; political influences, such as the switch from "returning farmland to forests" to "returning forests to farmland," will result in the destruction of the original good vegetation growth, which will significantly reduce the coordinated benefits of ecological governance. The original coordinated system will also be fractured, which is a problem worth contemplating. And policymakers, researchers, and practitioners can use the evaluation system and analysis method proposed in this paper as an effective tool to promote sustainable development and ecological governance.
RESUMO
As an important basis for the optimization of territorial space, ecological management zoning is of great significance for maintaining regional ecological security and promoting the construction of ecological civilization. With 10 ecosystem services, such as wind break and sand fixation, water conservation, and forest and grass supply, we built a supply index system for Xinjiang. Modelling and ecological economics methods were used to quantify ecosystem service supply. Ecosystem service demand of Xinjiang in 2020 was quantitatively assessed by combining land use intensity, population, and economic status. Based on the ecosystem service supply-demand ratio model and quadrant matching method, we explored the matching relationship and spatial differentiation of ecosystem ser-vice supply and demands on the 1 km grid scale. The breaking point formula and field intensity formula were used to evaluate the flow range and intensity of ecosystem services, and then ecological management zones were divided and corresponding control measures were proposed. The results showed obvious spatial differences in the supply and demand of ecosystem services in Xinjiang in 2020. The high-supply areas were mainly distributed in river valleys and along river systems, while the demand was concentrated in oasis-central cities. The overall supply of ecosystem services was less than the demand. The spatial distribution was dominated by low supply-low demand areas and high supply-high demand areas. There were seven output zones of ecosystem services in Xinjiang, namely Fuyun County, Fuhai County, Yizhou District, Shanshan County, Alashankou City, Keping County and Qira County. The rests were input zones. According to the comprehensive analysis, Xinjiang could be divided into five ecological management areas, i.e., mountain ecological barrier area, oasis ecological restoration area, desert ecological improvement area, desert-oasis ecological protection area, and patch ecological transport area.
Assuntos
Conservação dos Recursos Hídricos , Ecossistema , Florestas , China , Planejamento de CidadesRESUMO
Integrating ecosystem services supply-demand relationships into ecological management zoning is a hot topic. Most studies have focused on the matching relationship between the supply and demand of ecosystem services. However, the extent to which both are coordinated at different matching levels is ignored, that is, whether ecosystem services supply and demand tend to reinforce each other at high levels or constrain each other at low levels. Therefore, taking Dalian as an example, this study constructed a research framework for ecological management zoning by integrating the matching and coupling coordination relationship of ecosystem services supply-demand. We found that the supply of ecosystem services in Dalian decreased by 23.70% and the demand increased by 22.54% from 2005 to 2019. There was an obvious mismatch and disharmony in the supply and demand of ecosystem services, and the matching and coordination often did not exist simultaneously. Overlay analysis was used to divide Dalian into four ecological management zones: eco-conservation, eco-development, eco-improvement, and eco-restoration zones. This study helped in integrating the matching and coupling coordination relationship of ecosystem services supply-demand into the environmental management system, which has practical significance for the sustainable development of ecosystem services.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cidades , China , Desenvolvimento SustentávelRESUMO
The yield and nutritional profile of grass and legume species in Kashmir Valley's rangelands are scantly reported. The study area in this paper included three types of sites (grazed, protected, and seed-sown) divided into three circles: northern, central, and southern Kashmir. From each circle, three districts and three villages per district were selected. Most sites showed higher aboveground biomass (AGB) compared to belowground biomass (BGB), which showed low to moderate effects on biomass. The comparison between northern, central, and southern Kashmir regions revealed that AGB (86.74, 78.62, and 75.22 t. ha-1), BGB (52.04, 51.16, and 50.99 t. ha-1), and total biomass yield (138.78, 129.78, and 126.21 t. ha-1) were the highest in central Kashmir region, followed by southern and northern Kashmir regions, respectively. More precisely, AGB and total biomass yield recorded the highest values in the protected sites of the central Kashmir region, whereas BGB scored the highest value in the protected sites of southern Kashmir region. The maximum yield (12.5 t. ha-1) recorded among prominent grasses was attributed to orchard grass, while the highest crude fiber and crude protein contents (34.2% and 10.4%, respectively), were observed for Agrostis grass. The maximum yield and crude fiber content (25.4 t. ha-1 and 22.7%, respectively), among prominent legumes were recorded for red clover. The highest crude protein content (33.2%) was attributed to white clover. Those findings concluded the successful management of Kashmir rangelands in protected sites, resulting in high biomass yields along with the considerable nutritional value of grasses and legumes.
RESUMO
Water resources are important factors limiting social and economic development, so how to ensure the coordination between economic development and water resources-ecological management capacity has become a key issue that needs to be addressed urgently for China's high-quality economic development. This paper used nighttime light data as proxy variables of economic development to calculate the coupling coordination degree between provincial economic development and water resources-ecological management capacity in China from 2004 to 2019 based on the coupling coordination degree model; w constructed a spatial econometric model to explore the spatial correlation and influencing factors between economic development and water resources-ecological management capacity. The results are shown in the following: (1) The overall level of China's economic development is on an upward trend, but the regional development is unbalanced, showing a decreasing spatial pattern distribution of the eastern coastal region-mid-western region-far-western region. (2) The level of water resources-ecological management capacity is low, and the spatial distribution shows a decreasing trend in the far west-central and western-eastern coastal regions. (3) The level of coupling and coordination between economic development and water resources-ecological management capacity rises from a mild imbalance level to a little imbalance level, and the spatial distribution is consistent with the spatial distribution of economic development. (4) The factors influencing the level of coupling and coordination of inter-provincial economic development and water resources-ecological management capacity in China mainly involve the population scale, technological progress, affluence, and foreign direct investment. Each province and city should take into account its own actual situation and develop targeted measures to promote the coordinated development of economic development and the water resources-ecological management capacity.
Assuntos
Desenvolvimento Econômico , Recursos Hídricos , Água , Iluminação , China , CidadesRESUMO
The frequent occurrence of extreme climate events has become an indisputable fact. However, the role of adaptation to extreme climate change in the development of livestock husbandry is still insufficiently understood. This study empirically analyzed the impact of herders' adaptation strategies to extreme drought on livestock husbandry development and aimed to explore the optimal grassland management path under continuous climate change. A panel dataset of surveyed herders from the Xilingol League, a traditional pastoral area in China, was used. The results indicated that the average frequency of extreme drought in the Xilingol League from 1980 to 2020 was 4.94 months/year, and the occurrence of extreme drought showed a slightly upward trend. The average technical efficiency of livestock husbandry was 0.721, which can still be improved. Hay purchases can effectively promote livestock technical efficiency (p<0.01) and is the main adaptation strategy of herders to extreme drought. Further analysis showed that non-farming and pastoral employment has a positive regulatory effect in the impact of purchased hay on livestock technical efficiency. The results of this study deepen the understanding of effective adaptation to extreme weather events in pastoral areas due to climate change and provide useful information to policymakers engaged in grassland management.
Assuntos
Criação de Animais Domésticos , Mudança Climática , Animais , Adaptação Fisiológica , Secas , Aclimatação , GadoRESUMO
Ecological management has been implemented to improve individual well-being. However, it remains unclear whether this management has improved health inequality over time. Aiming to examine whether health inequality is caused by ecological management in China, we harnessed a macro-level dataset from 2001 to 2019 across 31 Chinese provinces-combined with gene and dietary culture data-and utilized a bilateral approach to pair provincial data. Empirical results of system Generalized Method of Moments (sys-GMM) estimations in benchmark and extensive models which suggest a negative and statistically significant causal effect of ecological management on health inequality. Specifically, ecological management contributes to decreasing the inequality in the population death rate, the death rate among pregnant women, the underweight newborn rate, the child malnutrition rate, and the infectious disease mortality. The results are robust to weak instruments in the sys-GMM setting and a delayed effect of ecological management. Additionally, the heterogeneity analysis shows that the causal effect of ecological management on decreasing regional health inequality is more significant and higher for subsamples in identical regions than in different regions.
Assuntos
Transtornos da Nutrição Infantil , Disparidades nos Níveis de Saúde , Recém-Nascido , Criança , Humanos , Feminino , Gravidez , China , MagrezaRESUMO
Roadside trees not only add aesthetic appeal to tea plantations, but also serve important ecological purposes for the shaded tea plants. In this study, we selected tea orchards with two access roads, from east to west (EW-road) and from south to north (SN-road), and the roadside trees formed three types of ecological shading of the adjoining tea plants; i.e., south shading (SS) by the roadside trees on the EW-road, and east shading and west shading (ES and WS) by the roadside trees on the SN-road. We studied the impacts of ecological shading by roadside trees on the tea plants, insects, and soil microbes in the tea plantation, by measuring the contents of soluble nutrients, bioactive compounds in the tea, and tea quality indices; and by investigating the population occurrence of key species of insects and calculating insect community indexes, while simultaneously assaying the soil microbiome. The results vividly demonstrated that the shading formed by roadside tree lines on the surrounding tea plantation (SS, ES, and WS) had adverse effects on the concentration of tea soluble sugars but enhanced the foliar contents of bioactive components and improved the overall tea quality, in contrast to the no-shading control tea plants. In addition, the roadside tree lines seemed to be beneficial for the tea plantation, as they reduced pest occurrence, and ES shading enhanced the microbial soil diversity in the rhizosphere of the tea plants.
RESUMO
Monitoring is critical to gauge the effect of environmental management interventions as well as to measure the effects of human disturbances such as climate change. Recognition of the critical need for monitoring means that, at irregular intervals, recommendations are made for new government-instigated programs or to revamp existing ones. Using insights from past well-intentioned (but sadly also often failed) attempts to establish and maintain government-instigated monitoring programs in Australia, we outline eight things that should never be done in environmental monitoring programs (if they aim to be useful). These are the following: (1) Never commence a new environmental management initiative without also committing to a monitoring program. (2) Never start a monitoring program without clear questions. (3) Never implement a monitoring program without first doing a proper experimental design. (4) Never ignore the importance of matching the purpose and objectives of a monitoring program to the design of that program. (5) Never change the way you monitor something without ensuring new methods can be calibrated with the old ones. (6) Never try to monitor everything. (7) Never collect data without planning to curate and report on it. (8) If possible, avoid starting a monitoring program without the necessary resources secured. To balance our "nevers", we provide a checklist of actions that will increase the chances a monitoring program will actually measure the effectiveness of environmental management. Scientists and resource management practitioners need to be part of a stronger narrative for, and key participants in, well-designed, implemented, and maintained government-led monitoring programs. We argue that monitoring programs should be mandated in threatened species conservation programs and all new environmental management initiatives.
Assuntos
Espécies em Perigo de Extinção , Monitoramento Ambiental , Animais , Austrália , Mudança Climática , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodosRESUMO
Invasive species account for incalculable damages worldwide, in both ecological and bioeconomic terms. The question of how a network of invasive populations can be optimally managed is one that deserves further exploration. A study accounting for partial observability and imperfect detection, in particular, could yield useful insights into species eradication efforts. Here, we generalized a simple model system that we developed in previous work. This model consists of three interacting populations with underlying strong Allee effects and stochastic dynamics, inhabiting distinct locations connected by dispersal, which can generate bistability. To explore the stochastic dynamics, we formulated an individual-based modeling approach. Next, using the theory of continuous-time Markov chains, we approximated the original high-dimensional model by a Markov chain with eight states, with each state corresponding to a combination of population thresholds. We then used the reduced model as the core for a powerful decision-making tool, referred to as a Partially Observable Markov Decision Process (POMDP). Analysis of this POMDP indicates when the system results in optimal management outcomes.
Assuntos
Modelos Biológicos , Cadeias de Markov , Dinâmica Populacional , Processos EstocásticosRESUMO
Spontaneous urban plants (SUPs) constitute an important component of urban vegetation, but they have received less attention in urban biodiversity and ecological research, especially at the regional scale. We comprehensively reviewed the occurrence records of SUPs in 59 major cities across China's geographical regions. We systematically analyzed floristic composition profiles and diversity patterns of SUPs at the regional scale and explored their influencing factors. The study identified 1211 SUP species through an extensive search of existing field research studies and fieldwork. The species composition pattern of SUPs, displaying a spatial association with climatic zones, was mainly affected by climatic factors and also anthropogenic factors. At different geographic scales, the life-form characteristics revealed some patterns, with more diverse perennials at the regional scale. The abundance of SUPs and the high proportion of native species suggested that limited urban habitats can still contribute to the enrichment and accumulation of urban biodiversity. However, in the context of globalization, continual species exchanges between neighboring regions at different scales may significantly exacerbate urban-biota homogenization. In conclusion, our study provided a regional-scale case of a synoptic SUP profile. The results furnished a scientific basis for understanding the general patterns of SUPs. The findings could inform sustainable solutions for urban ecological planning and management of spontaneous nature in cities.