Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417494

RESUMO

Fluoride ion (F-) is one of the major geogenic contaminants in water and soil. Excessive consumption of these geogenic contaminants poses serious health impacts on humans and plants. In this study, a novel carbonaceous material, nano-bonechar, was synthesized from cow bones and applied as a soil amendment at rates of 0, 0.5, 1, and 2% to remediate and revitalize naturally F--contaminated soil. The results revealed that the nano-bonechar significantly reduced the mobility and bioavailability of F- by 90% in the contaminated soil, and improved the soil quality by increasing the soil water holding capacity, soil organic matter, and the bioavailable contents of PO43-, Ca2+, and Na+. Subsequently, the pot experiment results showed a significant reduction in the uptake of F- by 93% in Zea mays plants. Moreover, the nano-bonechar application improved the plant's growth, as indicated by the higher fresh and dry weights, root and shoot lengths, and total content of PO43-, Ca2+, and K+ than those of un-amended soil. The F-immobilization in soil was mainly due to the presence of the hydroxyapatite [Ca10(PO4)6(OH)2] mineral in the nano-bonechar. Ion exchange between OH- (of nano-bonechar) and F- (of soil), and the formation of insoluble fluorite (CaF2) contributed to the attenuation of F- mobility in the soil. It is concluded that nano-bonechar, due to its size and enrichment in hydroxyapatite, could successfully be utilized for the rapid remediation and revitalization of F--contaminated agricultural soil.


Assuntos
Fluoretos , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Solo , Água , Hidroxiapatitas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA