Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Environ Manage ; 370: 122460, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288498

RESUMO

China has explicitly prioritized the enhancement of ecosystem quality and stability(EQS) as a governmental objective. However, our understanding of systematic and comprehensive assessment methods for EQS remains limited. The development and investigation of corresponding evaluation frameworks and their underlying mechanisms remain insufficiently explored. This study employs the concept of an "ideal reference system and key indicators," integrating diverse ecosystem and human activity characteristics from perspectives such as ecosystem structure, function, and landscape vulnerability, to determine indicator weights using the Analytic Hierarchy Process(AHP) and entropy weight method, thereby constructing an evaluation framework for assessing the quality and stability of the Qinghai-Tibet Plateau(QTP) ecosystem. The spatiotemporal variations in EQS from 2000 to 2018 were examined, and the key driving factors were identified using the optimal parameter-based geographical detector (OPGD). The results indicate that the EQS of the QTP exhibit a spatial distribution pattern characterized by higher values in the southeast and lower values in the northwest. From 2000 to 2018, there has been a consistent improvement in the overall ecosystem quality and stability across the QTP. The EQS exhibit a significant synergistic effect, with high-high(26.59 ± 1.26%) and low-low(32.61 ± 1.45%) matching combinations becoming the predominant regional patterns. However, in climatic transition zones and glacial areas, the relationship between these factors is particularly distinctive, indicating ecosystem response mechanisms specific to certain natural environmental conditions. Vegetation cover(>0.697), evapotranspiration(>0.620), and precipitation(>0.688) are the primary natural factors influencing EQS, while the impact of human activities has become increasingly significant. Furthermore, the research findings underscore the positive effects of the variable climatic conditions of the QTP on ecosystems within the context of global climate warming, while the stringent implementation of ecological protection measures has collectively contributed to the enhancement of EQS. The proposed evaluation framework not only facilitates a comprehensive and precise assessment of regional EQS, but also provides a scientific basis for understanding and managing the adaptive responses of plateau ecosystems under the complex interplay of natural and anthropogenic factors.

2.
Glob Chang Biol ; 30(8): e17482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189596

RESUMO

Rising global temperatures are often identified as the key driver impacting ecosystems and the services they provide by affecting biodiversity structure and function. A disproportionate amount of our understanding of biodiversity and function is from short-term experimental studies and static values of biodiversity indices, lacking the ability to monitor long-term trends and capture community dynamics. Here, we analyse a biennial dataset spanning 32 years of macroinvertebrate benthic communities and their functional response to increasing temperatures. We monitored changes in species' thermal affinities to examine warming-related shifts by selecting their mid-point global temperature distribution range and linking them to species' traits. We employed a novel weighted metric using Biological Trait Analysis (BTA) to gain better insights into the ecological potential of each species by incorporating species abundance and body size and selecting a subset of traits that represent five ecosystem functions: bioturbation activity, sediment stability, nutrient recycling and higher and lower trophic production. Using biodiversity indices (richness, Simpson's diversity and vulnerability) and functional indices (richness, Rao's Q and redundancy), the community structure showed no significant change over time with a narrow range of variation. However, we show shifts in species composition with warming and increases in the abundance of individuals, which altered ecosystem functioning positively and/or non-linearly. Yet, when higher taxonomic groupings than species were excluded from the analysis, there was only a weak increase in the measured change in community-weighted average thermal affinities, suggesting changes in ecosystem functions over time occur independently of temperature increase-related shifts in community composition. Other environmental factors driving species composition and abundance may be more important in these subtidal macrobenthic communities. This challenges the prevailing emphasis on temperature as the primary driver of ecological response to climate change and emphasises the necessity for a comprehensive understanding of the temporal dynamics of complex systems.


Assuntos
Biodiversidade , Ecossistema , Invertebrados , Temperatura , Animais , Invertebrados/fisiologia , Mudança Climática , Aquecimento Global
3.
J Environ Manage ; 368: 122214, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39191057

RESUMO

Biodiversity loss and forest degradation have received increasing attention worldwide, and their effects on forest biomass carbon storage and stability have not yet been well defined. This study examined 1275 tree plots using the field survey method to quantify the effects of tree diversity, tree sizes, and mycorrhizal symbiont abundance on biomass carbon storages (Cs) and NDVI (Normalized Difference Vegetation Index)-based ecosystem stability (standard deviation/mean NDVI = NDVI_S) during the field survey period from 2008 to 2018. Our data showed Cs and NDVI_S averaged at 31-108 t ha-1 and 32.04-49.28, respectively, and positive relations between Cs and NDVI_S were observed (p < 0.05). Large forest-type and regional variations were found in these two parameters. Broadleaf forests had 74% of Cs (p < 0.05) of the conifer forests, but no differences were in NDVI_S. Cold regions at high latitudes had 71% of NDVI_S in the warm regions at low latitudes, while no differences were in Cs. Moist regions at high longitudes had 2.04 and 1.28-fold higher Cs and NDVI_S (p < 0.05). The >700 m a.s.l. regions had 1.24-fold higher Cs (p < 0.01) than the <700 m a.s.l. regions, but similar NDVI_S (p > 0.05). Nature Reserves had 1.94-fold higher Cs but 30% lower NDVI_S than outside Reserves (p < 0.001). > 40-year-old forests had 1.3- and 2-fold higher Cs and NDVI_S than the young forests. Structural equation modeling and hierarchical partitioning revealed the driving paths responsible for these variations. Tree richness was positively associated with Cs and ecosystem stability, contributing 21.6%-30.6% to the total effects on them; tree sizes significantly promoted the Cs, but had negligible impacts on NDVI_S. MAT's total effects on NDVI_S of conifer forests were 40% higher than that of broadleaf forests, MAP's total effects on Cs varied with forest types; arbuscular mycorrhizal tree dominance exhibited a smaller positive impact on Cs and ecosystem stability in comparison to other factors. Our findings underscore that the significance of climatic-adapted forest management, diversity conservation, and big-sized tree protections can support the achievement of carbon neutrality in China from biomass carbon sequestration and ecosystem stability.


Assuntos
Biodiversidade , Biomassa , Sequestro de Carbono , Ecossistema , Florestas , Árvores , China , Carbono/análise , Micorrizas
4.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999689

RESUMO

The low nutrient content of soil in desert ecosystems results in unique physiological and ecological characteristics of plants under long-term water and nutrient stress, which is the basis for the productivity and stability maintenance of the desert ecosystem. However, the relationship between the soil and the plant nutrient elements in the desert ecosystem and its mechanism for maintaining ecosystem stability is still unclear. In this study, 35 sampling sites were established in an area with typical desert vegetation in the Qaidam Basin, based on a drought gradient. A total of 90 soil samples and 100 plant samples were collected, and the soil's physico-chemical properties, as well as the nutrient elements in the plant leaves, were measured. Regression analysis, redundancy analysis (RDA), the Theil-Sen Median and Mann-Kendall methods, the structural equation model (SEM), and other methods were employed to analyze the distribution characteristics of the soil and plant nutrient elements along the drought gradient and the relationship between the soil and leaf nutrient elements and its impact on ecosystem stability. The results provided the following conclusions: Compared with the nutrient elements in plant leaves, the soil's nutrient elements had a more obvious regularity of distribution along the drought gradient. A strong correlation was observed between the soil and leaf nutrient elements, with soil organic carbon and alkali-hydrolyzed nitrogen identified as important factors influencing the leaf nutrient content. The SEM showed that the soil's organic carbon had a positive effect on ecosystem stability by influencing the leaf carbon, while the soil's available phosphorus and the mean annual temperature had a direct positive effect on stability, and the soil's total nitrogen had a negative effect on stability. In general, the soil nutrient content was high in areas with a low mean annual temperature and high precipitation, and the ecosystem stability in the area distribution of typical desert vegetation in the Qaidam Basin was low. These findings reveal that soil nutrients affect the stability of desert ecosystems directly or indirectly through plant nutrients in the Qaidam Basin, which is crucial for maintaining the stability of desert ecosystems with the background of climate change.

5.
Water Res ; 261: 122054, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986279

RESUMO

Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability. The network architecture of phytoplankton showed strong dynamic changes with varying environments. Our results revealed cascading effects of eutrophication and climate change on phytoplankton network stability via changes in network complexity. The network stability of phytoplankton increased with average degree, modularity, and nestedness and decreased with connectance. Eutrophication (increasing nitrogen) stabilized the phytoplankton network, mainly by increasing its average degree, while climate change, i.e., warming and decreasing wind speed enhanced its stability by increasing the cohesion of phytoplankton communities directly and by decreasing the connectance of network indirectly. A remarkable shift and a major decrease in the temporal dynamics of phytoplankton network complexity (average degree, nestedness) and stability (robustness, persistence) were detected after 2007 when numerous eutrophication mitigation efforts (not all successful) were implemented, leading to simplified phytoplankton networks and reduced stability. Our findings provide new insights into the organization of phytoplankton networks under eutrophication (or re-oligotrophication) and climate change in subtropical shallow lakes.


Assuntos
Mudança Climática , Eutrofização , Lagos , Fitoplâncton , China , Ecossistema , Humanos
6.
J Environ Manage ; 360: 121176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759547

RESUMO

Globally, grazing activities have profound impacts on the structure and function of ecosystems. This study, based on a 20-year MODIS time series dataset, employs remote sensing techniques and the Seasonal-Trend decomposition using Loess (STL) algorithm to quantitatively assess the stability of alpine grassland ecosystems from multiple dimensions, and to reveal the characteristics of grazing activities and environmental conditions on ecosystem stability. The results indicate that only 5.77% of the area remains undisturbed, with most areas experiencing varying degrees of disturbance. Further analysis shows that grazing activities in high vegetation coverage areas are the main source of interference. In areas with concentrated interference, elevation and slope have a positive correlation with resistance stability, but a negative correlation with recovery stability. Precipitation and landscape diversity have positive effects on both resistance stability and recovery stability. Vegetation coverage and grazing intensity have a negative correlation with resistance stability, but a positive correlation with recovery stability. This highlights the complex interactions between human activities, environmental factors, and ecosystem stability. The findings emphasize the need for targeted conservation and management strategies to mitigate disturbances to ecosystems affected by human activities and enhance their stability.


Assuntos
Ecossistema , Pradaria , Animais , Conservação dos Recursos Naturais , Herbivoria
7.
J Environ Manage ; 359: 121014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704954

RESUMO

Maintaining optimal ecological security in the Yangtze River-connected and isolated lake basins is of great significance to national projects involving Yangtze River protection. Ecosystem stability and associated factors are important components of ecological security in these basins. However, few studies have focused on ecosystem stability and its driving factors over long periods in the Yangtze River Basin. In this study, a remote sensing index was used to analyze the spatiotemporal variation in the ecosystem stability of the Dongting Lake Basin (DTL), Poyang Lake Basin (PYL), and the isolated Chaohu Lake Basin (CHL) and Taihu Lake Basin (THL) in the Yangtze River over the period 2000-2022 to determine the potential affecting factors. The results showed fluctuations in the ecosystem stability of the DTL and PYL, while a V-shape was observed for the CHL and THL during the same period; the closer to the lake, the weaker the stability of the ecosystem, especially in the DTL and PYL. Moreover, the ecosystem stability was greater in the DTL and PYL than in the CHL and THL. The spillover effect of anthropogenic activities on the ecosystem stability of the four basins and the direct effect of temperature have the greatest effect on the ecosystem stability. Specifically, the ecosystem stability index for the area around the DTL and PYL decreased with increasing human interference, whereas the opposite was observed in the CHL and THL. The effect of temperature was negative for the ecosystem stability of DTL and PYL and significantly positive for CHL and THL, at a level of 0.01 %. The findings of this study provide significant information for targeted ecological restoration of the Yangtze River Basin.


Assuntos
Ecossistema , Lagos , Rios , Rios/química , Monitoramento Ambiental , Clima , China
8.
Sci Total Environ ; 930: 172673, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38677433

RESUMO

The cropland ecosystem stability (CES) has received increasing attention, especially in ecologically fragile areas, because of its impact on cropland quality, agricultural production and its ability to resist external disturbances. In this study, we first introduced the concepts of resilience and resistance, proposed the ecosystem disturbance-resistance-response process, and established a framework for evaluating the spatial and temporal dynamics of the CES based on RS data, and innovatively combined the RS assessment results of CES with soil field samples data to further classify cropland ecological types (CET) in a key agricultural areas of the Qinghai-Tibetan Plateau, which can effectively identify those croplands in need of priority ecological protection. Results indicate that the combined interactions of disturbance, resistance and response systems affect CES, forming a complex process with significant fluctuations and spatial variations. We also conclude that the disturbance system is positively influenced by topography and precipitation, while slope negatively affects resistance system. Hydrothermal conditions positively influence resistance system, while the response system is influenced by environmental factors at a lower intensity in six periods. It was interesting to note that soil α-biodiversity indicators are significantly and positively correlated with CES at the end of the study period. Therefore, based on the CES assessment results, we further combined the soil α-biodiversity indicators to classify the type of spatial pattern of CET and found that the eastern and northern areas have better quality, which implied an increase in the CES and a higher level of soil biodiversity, which was ideal for cropland expansion. On the contrary, we concluded that the ecosystem maintenance of the Huangshui headwaters and the northern mountainous areas needs to be strengthened in order to reverse the ecological fragility here and safeguard the cropland productive capacity.


Assuntos
Agricultura , Ecossistema , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas , Biodiversidade , Solo/química , Tibet
10.
Trends Ecol Evol ; 39(7): 689-700, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38503639

RESUMO

The global biodiversity crisis has stimulated decades of research on three themes: species coexistence, biodiversity-ecosystem functioning relationships (BEF), and biodiversity-ecosystem functional stability relationships (BEFS). However, studies on these themes are largely independent, creating barriers to an integrative understanding of the causes and consequences of biodiversity. Here we review recent progress towards mechanistic integration of coexistence, BEF, and BEFS. Mechanisms underlying the three themes can be linked in various ways, potentially creating either positive or negative relationships between them. That said, we generally expect positive associations between coexistence and BEF, and between BEF and BEFS. Our synthesis represents an initial step towards integrating causes and consequences of biodiversity; future developments should include more mechanistic approaches and broader ecological contexts.


Assuntos
Biodiversidade , Ecossistema , Conservação dos Recursos Naturais , Animais
11.
Sci Total Environ ; 926: 171651, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490417

RESUMO

Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Oryza , Animais , Anuros , Bactérias
12.
J Environ Manage ; 348: 119296, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820436

RESUMO

Critical ecological areas (CEAs), as important regions for biodiversity and ecosystem functions, are crucial for ecological conservation and environmental management at regional and global scales. However, the methodology and framework of CEA identification have not been well established. In this study, a comprehensive CEA identification method was developed based on the ecosystem multifunctionality-stability-integrity framework by using K-means clustering, critical slowing down theory and possible connectivity. Taking the Yellow River basin (YRB) as a case study, our results showed that ecosystem multifunctionality gradually decreased from the southeast to northwest. A decrease in ecosystem stability was observed since 2017 and was mainly due to the increased impacts of human activities and urbanization within the 10-20 km distance threshold from the ecosystem. Based on the proposed framework, 15.13% of the YRB was identified as CEAs with reliable estimates, and most areas were distributed in the Three-River Headwaters, Qinling and Taihang Mountains. Moreover, urbanization and precipitation were found to be the dominant environmental factors affecting the CEA distribution in the YRB. Our results indicated that the proposed framework could provide a comprehensive approach for CEA identification and useful implications for ecological conservation and environmental management.


Assuntos
Ecossistema , Rios , Humanos , Biodiversidade , China , Atividades Humanas , Conservação dos Recursos Naturais
13.
Environ Sci Pollut Res Int ; 30(46): 102474-102489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668775

RESUMO

The ecological security (ES) of urban agglomeration and surrounding environmental system is related to the sustainable development of cities, which is a hot spot that we must pay attention to. In this study, four subsystems composed of natural base, landscape structure, ecosystem stability, and anthropogenic interference were used to evaluate the comprehensive ecological security (CES) of Guangdong-Hong Kong-Macao Greater Bay Area (GHMGBA) in 2000, 2010 and 2020. The results show that CES of the region was generally well. The central urban region of GHMGBA was unsafety with an area proportion of about 24.5%, the periphery was safety with an area proportion of about 43.5%, and the others are transitional zone. From 2000 to 2020, the CES change first slightly decreases and then relatively stable, and the transfer of different safety levels mainly occurs in the transitional zone. In 2010-2020 the transfer of different levels of CES is more frequent than in 2000-2010, indicating that the spatial-temporal pattern of CES fluctuated sharply during 2010-2020. The urban-rural gradient showed that with the increase of distance, CES fluctuations increase, but decreases at about 20-40km, 60-80km and 120-140km away from the city center, which may be sub-urban regions. The overall CES change range gradually decreases with increasing distance from urban centers. This study helps to understand the temporal and spatial distribution of ecological environment and urban-rural gradient in typical urban regions, and provides a reference for the collaborative planning of urban agglomeration.

14.
Sci Total Environ ; 901: 165887, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37517715

RESUMO

Understanding how Mediterranean forests respond to the increasing frequency of extreme droughts and forest densification is crucial for effective land management in the present context of climate change and land abandonment. We study the responses of Iberian holm oak (Quercus ilex L.) woodlands to recent extreme droughts during 2000-2019 along broad gradients of climate aridity and forest structure. To this purpose, we apply large-scale remote-sensing using MODIS EVI as a primary production proxy in 5274 Q. ilex sites distributed within a 100,000 km2 region in eastern Spain. These woodlands were extensively affected by two extreme drought events in 2005 and 2012. Resistance, assessed as the capacity of the ecosystems to maintain primary production during drought, was significantly lower for semi-arid than for sub-humid and dry-transition conditions. Holm oak woodlands located in semi-arid areas of the region showed also poorer resilience to drought, characterized by low capacity to fully recover to their pre-drought production levels. Further, drought intensity and both pre- and post-drought hydric conditions controlled the variations of resistance, recovery and resilience between the two analyzed extreme drought events. Drought effects were particularly negative for dense Q. ilex stands under semi-arid climate conditions, where strong competition for scarce water resources reduced drought resistance. The observed drought vulnerability of semi-arid holm oak woodlands may affect the long-term stability of these dry forests. Adaptive management strategies, such as selective forest thinning, may be useful for improving drought responses in these more vulnerable semi-arid woodlands. Conversely, natural rewilding may more appropriately guide management actions for more humid areas, where densely developed Q. ilex woodlands show in general a high ability to maintain ecosystem primary production during drought.


Assuntos
Ecossistema , Quercus , Secas , Quercus/fisiologia , Espanha , Florestas , Mudança Climática , Árvores/fisiologia
15.
Ecol Appl ; 33(5): e2868, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128749

RESUMO

Stream restorations are increasingly critical for managing and recovering freshwater biodiversity in human-dominated landscapes. However, few studies have quantified how rehabilitative actions promulgate through aquatic communities over decades. Here, a long-term dataset is analyzed for fish assemblage change, incorporating data pre- and post-restoration periods, and testing the extent to which native assemblage stability has increased over time. In the late 1950s, a large capacity dam was installed on Putah Creek (Solano County, CA, USA), which altered the natural flow regime, channel structure, geomorphic processes, and overall ecological function. Notably, downstream flows were reduced (especially during summer months) resulting in an aquatic assemblage dominated by warm-water nonnative species, while endemic native species subsisted at low levels as subordinates. A court-mediated Accord was ratified in 2000, providing a more natural flow regime, specifically for native and anadromous fishes in the stream. The richness of nonnative species decreased at every site following the Accord, while the richness of native species increased or stayed constant. At the three most upstream sites, native species richness increased over time and ultimately exceeded nonnative richness. Native assemblage recovery was strongest upriver, closer to flow releases and habitat restoration activities, and decreased longitudinally downstream. Rank-abundance curves through time revealed that, while species evenness was low throughout the study, dominance shifted from nonnative to native species in the upstream sites coincident with rehabilitation efforts. Mean rank shifts decreased following flow rehabilitation; thus the assemblage became increasingly stable over time following flow rehabilitation. Putah Creek's rehabilitation may represent a model for others interested in improving endemic freshwater communities in degraded ecosystems.


Assuntos
Biodiversidade , Ecossistema , Humanos , Animais , Peixes , Estações do Ano , Água Doce
16.
Environ Monit Assess ; 195(6): 734, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231126

RESUMO

Grassland ecosystems are affected by the increasing frequency and intensity of extreme climate events (e.g., droughts). Understanding how grassland ecosystems maintain their functioning, resistance, and resilience under climatic perturbations is a topic of current concern. Resistance is the capacity of an ecosystem to withstand change against extreme climate, while resilience is the ability of an ecosystem to return to its original state after a perturbation. Using the growing season Normalized Difference Vegetation Index (NDVIgs, an index of vegetation growth) and the Standardized Precipitation Evapotranspiration Index (a drought index), we evaluated the response, resistance, and resilience of vegetation to climatic conditions for alpine grassland, grass-dominated steppe, hay meadow, arid steppe, and semi-arid steppe in northern China for the period 1982-2012. The results show that NDVIgs varied significantly across these grasslands, with the highest (lowest) NDVIgs values in alpine grassland (semi-arid steppe). We found increasing trends of greenness in alpine grassland, grass-dominated steppe, and hay meadow, while there were no detectable changes of NDVIgs in arid and semi-arid steppes. NDVIgs decreased with increasing dryness from extreme wet to extreme dry. Alpine and steppe grasslands exhibited higher resistance to and lower resilience after extreme wet, while lower resistance to and higher resilience after extreme dry conditions. No significant differences in resistance and resilience of hay meadow under climatic conditions suggest the stability of this grassland under climatic perturbations. This study concludes that highly resistant grasslands under conditions of water surplus are low resilient, but low resistant ecosystems under conditions of water shortage are highly resilient.


Assuntos
Ecossistema , Pradaria , Monitoramento Ambiental , China , Estações do Ano , Poaceae , Mudança Climática
17.
BMC Microbiol ; 23(1): 62, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882680

RESUMO

BACKGROUND: The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood. In this study, we carried out a three year study in an agriculturally dominated river basin in eastern Ontario, Canada to explore the spatial and temporal dynamics of the core and conditionally rare taxa (CRT) of the instream bacterial communities using a 16S rRNA gene amplicon sequencing approach. Water samples were collected from nine stream and drainage ditch sites that represented the influence of a range of upstream land uses. RESULTS: The cross-site core and CRT accounted for 5.6% of the total number of amplicon sequence variants (ASVs), yet represented, on average, over 60% of the heterogeneity of the overall bacterial community; hence, well reflected the spatial and temporal microbial dynamics in the water courses. The contribution of core microbiome to the overall community heterogeneity represented the community stability across all sampling sites. CRT was primarily composed of functional taxa involved in nitrogen (N) cycling and was linked to nutrient loading, water levels, and flow, particularly in the smaller agricultural drainage ditches. Both the core and the CRT were sensitive responders to changes in hydrological conditions. CONCLUSIONS: We demonstrate that core and CRT can be considered as holistic tools to explore the temporal and spatial variations of the aquatic microbial community and can be used as sensitive indicators of the health and function of agriculturally dominated water courses. This approach also reduces computational complexity in relation to analyzing the entire microbial community for such purposes.


Assuntos
Agricultura , Rios , RNA Ribossômico 16S/genética , Água Doce , Água
18.
Trends Ecol Evol ; 38(6): 532-544, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806396

RESUMO

Widespread evidence shows that local species richness (α-diversity) loss hampers the biomass production and stability of ecosystems. ß-Diversity, namely the variation of species compositions among different ecological communities, represents another important biodiversity component, but studies on how it drives ecosystem functioning show mixed results. We argue that to better understand the importance of ß-diversity we need to consider it across contexts. We focus on three scenarios that cause gradients in ß-diversity: changes in (i) abiotic heterogeneity, (ii) habitat isolation, and (iii) species pool richness. We show that across these scenarios we should not expect universally positive relationships between ß-diversity, production, and ecosystem stability. Nevertheless, predictable relationships between ß-diversity and ecosystem functioning do exist in specific contexts, and can reconcile seemingly contrasting empirical relationships.


Assuntos
Biodiversidade , Ecossistema , Biomassa
19.
Ying Yong Sheng Tai Xue Bao ; 34(1): 1-10, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799370

RESUMO

Improving ecosystem quality and stability is one of the urgent tasks of national ecological environment construction. However, the ecological theory of ecosystem quality and stability has not been well clarified. Based on the summary of influencing factors and interaction between ecosystem quality and stability, we discussed the ecolo-gical theory on the evolution of ecosystem quality and stability from the perspectives of self-organization of biological agglomeration and structure nesting, correlation of ecological elements and coupling of ecological processes, ecosystem integrity and function emergence, ecological service spillover and efficiency tradeoff, synergy and interactions between resource supply capacity and environmental suitability, as well as interactions between spontaneous change and human activities. Technologies approaches and management strategies were proposed from the aspects of ecosystem macro-pattern adjustment, protected natural areas system construction, regional complex ecosystem comprehensive management, degraded ecosystem restoration, damaged ecosystem reestablishment, typical ecosystem process management.


Assuntos
Ecologia , Ecossistema , Humanos , Melhoria de Qualidade , China , Conservação dos Recursos Naturais
20.
Appl Biochem Biotechnol ; 195(4): 2519-2586, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35593954

RESUMO

Unsustainable anthropogenic activities over the last few decades have resulted in alterations of the global climate. It can be perceived through changes in the rainfall patterns and rise in mean annual temperatures. Climatic stress factors exert their effects on soil health mainly by modifying the soil microenvironments where the soil fauna reside. Among the members of soil fauna, the soil nematodes have been found to be sensitive to these stress factors primarily because of their low tolerance limits. Additionally, because of their higher and diverse trophic positions in the soil food web they can integrate the effects of many stress factors acting together. This is important because under natural conditions the climatic stress factors do not exert their effect individually. Rather, they interact amongst themselves and other abiotic stress factors in the soil to generate their impacts. Some of these interactions may be synergistic while others may be antagonistic. As such, it becomes very difficult to assess their impacts on soil health by simply analysing the physicochemical properties of soil. This makes soil nematodes outstanding candidates for studying the effects of climatic stress factors on soil biology. The knowledge obtained therefrom can be used to design sustainable agricultural practices because most of the conventional techniques aim at short-term benefits with complete disregard of soil biology. This can partly ensure food security in the coming decades for the expanding population. Moreover, understanding soil biology can help to preserve landscapes that have developed over long periods of climatic stability and belowground soil biota interactions.


Assuntos
Nematoides , Solo , Animais , Solo/química , Ecossistema , Agricultura/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA