Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
R Soc Open Sci ; 11(5): 231601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076788

RESUMO

Late Ediacaran strata from Newfoundland, Canada (~574-560 Ma) document near-census palaeocommunities of some of the earliest metazoans. Such preservation enables reproductive strategies to be inferred from the spatial distribution of populations of fossilized benthic organisms, previously revealing the existence of both propagule and stoloniferous reproductive modes among Ediacaran frondose taxa. Here, we describe 'conga lines': linear arrangements of more than three closely spaced fossil specimens. We calculate probabilistic models of point maps of 13 fossil-bearing bedding surfaces and show that four surfaces contain conga lines that are not the result of chance alignments. We then test whether these features could result from passive pelagic propagules settling in the lee of an existing frond, using computational fluid dynamics and discrete phase modelling. Under Ediacaran palaeoenvironmental conditions, preferential leeside settlement at the spatial scale of the conga lines is unlikely. We therefore conclude that these features are novel and do not reflect previously described reproductive strategies employed by Ediacaran organisms, suggesting the use of mixed reproductive strategies in the earliest animals. Such strategies enabled Ediacaran frondose taxa to act as reproductive generalists and may be an important facet of early metazoan evolution.

2.
Proc Biol Sci ; 291(2023): 20240101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808442

RESUMO

The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.


Assuntos
Evolução Biológica , Fósseis , Fósseis/anatomia & histologia , Animais , China , Microtomografia por Raio-X , Filogenia
3.
Curr Biol ; 34(11): 2528-2534.e3, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38761801

RESUMO

The rise of animals across the Ediacaran-Cambrian transition marked a step-change in the history of life, from a microbially dominated world to the complex macroscopic biosphere we see today.1,2,3 While the importance of bioturbation and swimming in altering the structure and function of Earth systems is well established,4,5,6 the influence of epifaunal animals on the hydrodynamics of marine environments is not well understood. Of particular interest are the oldest "marine animal forests,"7 which comprise a diversity of sessile soft-bodied organisms dominated by the fractally branching rangeomorphs.8,9 Typified by fossil assemblages from the Ediacaran of Mistaken Point, Newfoundland,8,10,11 these ancient communities might have played a pivotal role in structuring marine environments, similar to modern ecosystems,7,12,13 but our understanding of how they impacted fluid flow in the water column is limited. Here, we use ecological modeling and computational flow simulations to explore how Ediacaran marine animal forests influenced their surrounding environment. Our results reveal how organism morphology and community structure and composition combined to impact vertical mixing of the surrounding water. We find that Mistaken Point communities were capable of generating high-mixing conditions, thereby likely promoting gas and nutrient transport within the "canopy." This mixing could have served to enhance local-scale oxygen concentrations and redistribute resources like dissolved organic carbon. Our work suggests that Ediacaran marine animal forests may have contributed to the ventilation of the oceans over 560 million years ago, well before the Cambrian explosion of animals.


Assuntos
Organismos Aquáticos , Fósseis , Oceanos e Mares , Animais , Organismos Aquáticos/fisiologia , Ecossistema , Hidrodinâmica
4.
R Soc Open Sci ; 11(3): 231313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511078

RESUMO

The tubular morphogroup is a common component of Earth's first complex, multicellular communities-the Ediacaran biota-and offers valuable insight into biological traits that are fundamental to animal life because they have intriguing links to metazoan phyla and are highly abundant in Ediacaran ecosystems. Biomineral tubes (e.g. Cloudina) are well described from the Nama assemblage (~550-538 Myr), yielding a relatively detailed understanding of this subset of the morphogroup. Conversely, the non-biomineral tubular taxa of the Nama assemblage, as well as of the older White Sea assemblage (~560-550 Myr), are poorly understood. As a result, the variability of characters that define non-biomineral tubular organisms is unknown and their diversity dynamics throughout the terminal Ediacaran are unconstrained. To test hypotheses related to the diversity, morphological variability and temporal distribution of non-biomineral tubes, a comprehensive database of non-biomineral Ediacaran tubular taxa was compiled. Results demonstrate previously unrecognized morphological disparity in the non-biomineral tubular morphogroup and reveal that it comprises a higher number of genera than all other non-tubular morphogroups in the White Sea and the Nama. Thus, it illustrates that a tubular form dominated Ediacaran ecosystems for considerably longer than previously appreciated and, importantly, was the most common solution to early multicellularity.

5.
Biol Rev Camb Philos Soc ; 99(1): 110-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37667585

RESUMO

The end-Neoproterozoic transition marked a gradual but permanent shift between distinct configurations of Earth's biosphere. This interval witnessed the demise of the enigmatic Ediacaran Biota, ushering in the structured trophic webs and disparate animal body plans of Phanerozoic ecosystems. However, little consensus exists on the reality, drivers, and macroevolutionary implications of end-Neoproterozoic extinctions. Here we evaluate potential drivers of late-Neoproterozoic turnover by addressing recent findings on Ediacaran geochronology, the persistence of classical Ediacaran macrobionts into the Cambrian, and the existence of Ediacaran crown-group eumetazoans. Despite renewed interest in the possibility of Phanerozoic-style 'mass extinctions' in the latest Neoproterozoic, our synthesis of the available evidence does not support extinction models based on episodic geochemical triggers, nor does it validate simple ecological interpretations centred on direct competitive displacement. Instead, we argue that the protracted and indirect effects of early bilaterian innovations, including escalations in sediment engineering, predation, and the largely understudied impacts of reef-building, may best account for the temporal structure and possible selectivity of late-Neoproterozoic extinctions. We integrate these processes into a generalised model of early eumetazoan-dominated ecologies, charting the disruption of spatial and temporal isotropy on the Ediacaran benthos as a consequence of diversifying macrofaunal interactions. Given the nature of resource distribution in Ediacaran ecologies, the continuities among Ediacaran and Cambrian faunas, and the convergent origins of ecologically disruptive innovations among bilaterians we suggest that the rise of Phanerozoic-type biotas may have been unstoppable.


Assuntos
Evolução Biológica , Ecossistema , Animais , Fósseis , Biota , Extinção Biológica
6.
Proc Natl Acad Sci U S A ; 120(30): e2301478120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459545

RESUMO

The geologically rapid appearance of fossils of modern animal phyla within Cambrian strata is a defining characteristic of the history of life on Earth. However, temporal calibration of the base of the Cambrian Period remains uncertain within millions of years, which has resulted in mounting challenges to the concept of a discrete Cambrian explosion. We present precise zircon U-Pb dates for the lower Wood Canyon Formation, Nevada. These data demonstrate the base of the Cambrian Period, as defined by both ichnofossil biostratigraphy and carbon isotope chemostratigraphy, was younger than 533 Mya, at least 6 My later than currently recognized. This new geochronology condenses previous age models for the Nemakit-Daldynian (early Cambrian) and, integrated with global records, demonstrates an explosive tempo to the early radiation of modern animal phyla.


Assuntos
Evolução Biológica , Madeira , Animais , Nevada , Fósseis , Isótopos de Carbono
7.
Geobiology ; 21(4): 407-420, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36755479

RESUMO

The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574-567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ13 C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ238 U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ238 U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ13 C and δ238 U trends during the SE. We suggest that global seawater δ238 U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.


Assuntos
Sedimentos Geológicos , Urânio , Isótopos de Carbono/análise , Carbonatos , Oxirredução
8.
Glob Chang Biol ; 29(1): 10-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220153

RESUMO

The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.


Assuntos
Planeta Terra , Camada de Gelo , Animais , Ecossistema , Fósseis , Regiões Antárticas
9.
Geobiology ; 21(1): 44-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200974

RESUMO

Most Neoproterozoic iron formations (NIF) are closely associated with global or near-global "Snowball Earth" glaciations. Increasingly, however, studies indicate that some NIFs show no robust evidence of glacial association. Many aspects of non-glacial NIF genesis, including the paleo-environmental setting, Fe(II) source, and oxidation mechanisms, are poorly understood. Here, we present a detailed case study of the Jiapigou NIF, a major non-glacial NIF within a Neoproterozoic volcano-sedimentary sequence in North Qilian, northwestern China. New U-Pb geochronological data place the depositional age of the Jiapigou NIF at ~600 Ma. Petrographic and geochemical evidence supports its identification as a primary chemical sediment with significant detrital input. Major and trace element concentrations, REE + Y systematics, and εNd (t) values indicate that iron was sourced from mixed seawater and hydrothermal fluids. Iron isotopic values (δ56 Fe = -0.04‰-1.43‰) are indicative of partial oxidation of an Fe(II) reservoir. We infer that the Jiapigou NIF was deposited in a redox stratified water column, where hydrothermally sourced Fe(II)-rich fluids underwent oxidation under suboxic conditions. Lastly, the Jiapigou NIF has strong phosphorous enrichments, which in other iron formations are typically interpreted as signals for high marine phosphate concentrations. This suggests that oceanic phosphorus concentrations could have been enriched throughout the Neoproterozoic, as opposed to simply during glacial intervals.


Assuntos
Ferro , Água do Mar , Ferro/análise , Oceanos e Mares , Planeta Terra , Fósforo , Compostos Ferrosos , Sedimentos Geológicos
10.
Geobiology ; 20(6): 790-809, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36250398

RESUMO

Most previous studies focused on the redox state of the deep water, leading to an incomplete understanding of the spatiotemporal evolution of the redox-stratified ocean during the Ediacaran-Cambrian transition. In order to decode the redox condition of shallow marine environments during the late Ediacaran, this study presents I/(Ca + Mg), carbon and oxygen isotope, major, trace, and rare earth element data of subtidal to peritidal dolomite from the Dengying Formation at Yangba, South China. In combination with the reported radiometric and biostratigraphic data, the Dengying Formation and coeval successions worldwide are subdivided into a positive δ13 C excursion (up to ~6‰) in the lower part (~551-547 Ma) and a stable δ13 C plateau (generally between 0‰ and 3‰) in the middle-upper part (~547-541 Ma). The overall low I/(Ca + Mg) ratios (<0.5 µmol/mol) and slightly negative to no Ce anomalies (0.80 < [Ce/Ce*]SN < 1.25), point to low-oxygen levels in shallow marine environments at Yangba. Moreover, four pulsed negative excursions in (Ce/Ce*)SN (between 0.62 and 0.8) and the associated two positive excursions in I/(Ca + Mg) ratios (up to 2.02 µmol/mol) are observed, indicative of weak oxygenations in the shallow marine environments. The comparison with other upper Ediacaran shallow water successions worldwide reveals that the (Ce/Ce*)SN and I/(Ca + Mg) values generally fall in the Precambrian range but their temporal trends differ among these successions (e.g., Ce anomaly profiles significantly different between Yangba and the Yangtze Gorge sections), which point to low oxygen levels with high redox heterogeneity in the surface ocean. This is consistent with the widespread anoxia as revealed by low δ238 U values reported by previous studies. Thus, the atmospheric oxygen concentrations during the late Ediacaran are estimated to be very low, similar to the case during the most Mesoproterozoic to early Neoproterozoic period.


Assuntos
Fósseis , Água do Mar , Carbono , Sedimentos Geológicos , Oceanos e Mares , Oxirredução , Oxigênio/análise , Isótopos de Oxigênio , Água
11.
Evol Dev ; 24(6): 189-195, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36281775

RESUMO

Ediacaran embryo-like spherical fossils exhibit diverse cell adhesion patterns resembling partial cleavage-stage embryos of living animals. Two three-celled specimens characterized by a pair of small cells overlying a large cell have been recovered from the Ediacaran Zhenba microfossil assemblage. Their cell adhesion pattern is highly comparable to a phenomenon reported from the Weng'an biota that was interpreted as fossil embryos undergoing discoidal cleavage. However, our specimens contain fewer cells and thus probably represent developmental precursors of the Weng'an counterparts. Additionally, new material shows several anatomical features that are inconsistent with an embryo interpretation, including (1) an unusually large volume of "blastomeres," (2) a putative nucleus preserved within the large "yolk cell," and (3) completely separated cells. Collectively, the Zhenba embryo-like specimens permit a reconstruction of the consecutive developmental sequence from single-celled individuals to the three-celled individuals, leading us to interpret the newly found specimens as products of abnormal development of Ediacaran embryo-like organisms whose affinity remains unresolved.


Assuntos
Embrião de Mamíferos , Fósseis , Animais , Divisão Celular , Evolução Biológica
12.
BMC Biol ; 20(1): 199, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36127662

RESUMO

BACKGROUND: In recent years, Precambrian lifeforms have generated an ever-increasing interest because they revealed a rich eukaryotic diversity prior to the Cambrian explosion of modern animals. Among them, macroalgae are known to be a conspicuous component of Neoproterozoic ecosystems, and chlorophytes in particular are already documented in the Tonian, when they were so far expected to originate. However, like for other major eukaryotic lineages, and despite predictions of molecular clock analyses placing roots of these lineages well into the Neoproterozoic, a taxonomic constraint on Precambrian green algae has remained difficult. RESULTS: Here, we present an exceptionally preserved spherical, coenocytic unicellular alga from the latest Ediacaran Dengying Formation of South China (> ca. 541 Ma), known from both external and internal morphology, fully tridimensional and in great detail. Tomographic X-ray and electronic microscopy revealed a characteristic medulla made of intertwined siphons and tightly packed peripheral utricles, suggesting these fossils belong to the Bryopsidales genus Codium. However, its distinctly smaller size compared to extant species leads us to create Protocodium sinense gen. et sp. nov. and a phylomorphospace investigation points to a possible stem group affinity. CONCLUSIONS: Our finding has several important implications. First, Protocodium allows for a more precise calibration of Archaeplastida and directly confirms that a group as derived as Ulvophyceae was already well diversified in various ecosystems prior to the Cambrian explosion. Details of tridimensional morphology also invite a reassessment of the identification of other Ediacaran algae, such as Chuaria, to better discriminate mono-versus multicellularity, and suggest unicellular Codium-like morphotypes could be much older and widespread. More broadly, Protocodium provides insights into the early diversification of the plant kingdom, the composition of Precambrian ecosystems, and the extreme longevity of certain eukaryotic plans of organization.


Assuntos
Clorófitas , Ecossistema , Animais , China , Clorófitas/genética , Células Eucarióticas , Fósseis
13.
Life (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207424

RESUMO

This review asks some hard questions about what the enigmatic graphoglyptid trace fossils are, documents some of their early fossil record from the Ediacaran-Cambrian transition and explores the idea that they may not have been fossils at all. Most researchers have considered the Graphoglyptida to have had a microbial-farming mode of life similar to that proposed for the fractal Ediacaran Rangeomorpha. This begs the question "What are the Graphoglyptida if not the Rangeomorpha persevering" and if so then "What if…?". This provocative idea has at its roots some fundamental questions about how to distinguish burrows sensu-stricto from the external molds of endobenthic sediment displacive organisms.

14.
Philos Trans R Soc Lond B Biol Sci ; 377(1847): 20210032, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125006

RESUMO

The origin and early evolution of animal development remain among the many deep, unresolved problems in evolutionary biology. As a compelling case for the existence of pre-Cambrian animals, the Ediacaran embryo-like fossils (EELFs) from the Weng'an Biota (approx. 609 Myr old, Doushantuo Formation, South China) have great potential to cast light on the origin and early evolution of animal development. However, their biological implications can be fully realized only when their phylogenetic positions are correctly established, and unfortunately, this is the key problem under debate. As a significant feature of developmental biology, the cell division pattern (CDP) characterized by the dynamic spatial arrangement of cells and associated developmental mechanisms is critical to reassess these hypotheses and evaluate the diversity of the EELFs; however, their phylogenetic implications have not been fully realized. Additionally, the scarcity of fossil specimens representing late developmental stages with cell differentiation accounts for much of this debate too. Here, we reconstructed a large number of EELFs using submicron resolution X-ray tomographic microscopy and focused on the CDPs and associated developmental mechanisms as well as features of cell differentiation. Four types of CDPs and specimens with cell differentiation were identified. Contrary to the prevailing view, our results together with recent studies suggest that the diversity and complexity of developmental mechanisms documented by the EELFs are much higher than is often claimed. The diverse CDPs and associated development features including palintomic cleavage, maternal nutrition, asymmetric cell divisions, symmetry breaking, establishment of polarity or axis, spatial cell migration and differentiation constrain some, if not all, EELFs as total-group metazoans. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.


Assuntos
Fósseis , Paleontologia , Animais , Biota , Embrião de Mamíferos , Filogenia
15.
Proc Biol Sci ; 288(1962): 20211875, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34727717

RESUMO

The Ediacaran period witnessed transformational change across the Earth-life system, but life on land during this interval is poorly understood. Non-marine/transitional Ediacaran sediments preserve a variety of probable microbially induced sedimentary structures and fossil matgrounds, and the ecology, biogeochemistry and sedimentological impacts of the organisms responsible are now ripe for investigation. Here, we report well-preserved fossils from emergent siliciclastic depositional environments in the Ediacaran of Newfoundland, Canada. These include exquisite, mouldically preserved microbial mats with desiccation cracks and flip-overs, abundant Arumberia-type fossils and, most notably, assemblages of centimetre-to-metre-scale, subparallel, branching, overlapping, gently curving ribbon-like features preserved by aluminosilicate and phosphate minerals, with associated filamentous microfossils. We present morphological, petrographic and taphonomic evidence that the ribbons are best interpreted as fossilized current-induced biofilm streamers, the earliest record of an important mode of life (macroscopic streamer formation) for terrestrial microbial ecosystems today. Their presence shows that late Ediacaran terrestrial environments could produce substantial biomass, and supports recent interpretations of Arumberia as a current-influenced microbial mat fossil, which we here suggest existed on a 'streamer-arumberiamorph spectrum'. Finally, the absence of classic Ediacaran macrobiota from these rocks despite evidently favourable conditions for soft tissue preservation upholds the consensus that those organisms were exclusively marine.


Assuntos
Evolução Biológica , Ecossistema , Biofilmes , Fósseis , Sedimentos Geológicos/química
16.
Biosystems ; 205: 104413, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33794297

RESUMO

The earliest record of animal life comes from the Ediacaran of Newfoundland, including dm scale fossil organisms, most of which are inferred to have been epibenthic immotile eumetazoans. This work introduces the palaeobiology of the major fossil groups in the Newfoundland assemblages including strange fractal-like taxa and addresses some of biogeochemical challenges such as sulfide buildup that could most easily have been overcome by symbiogenesis. Specifically, the epibenthic reclining nature of some of the Ediacaran biota-with their fractal-like high surface area lower surfaces-are considered to have been well designed for gaining nutriment from chemosynthetic, sulfur-oxidizing bacteria. This view constitutes a shift away from the view that most of the biota were anomalously large osmotrophs.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Biota/fisiologia , Simbiose , Biologia de Sistemas , Animais , Processos Autotróficos , Fósseis , Sedimentos Geológicos , Processos Heterotróficos , Morfogênese , Terra Nova e Labrador
17.
Proc Biol Sci ; 288(1945): 20203055, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622124

RESUMO

The Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms. This analysis demonstrates that the genetic pathways for multicellularity, axial polarity, musculature, and a nervous system were likely present in some of these early animals. Equally meaningful is the absence of evidence for major differentiation of macroscopic body units, including distinct organs, localized sensory machinery or appendages. Together these traits help to better constrain the phylogenetic position of several key Ediacara taxa and inform our views of early metazoan evolution. An apparent lack of heads with concentrated sensory machinery or ventral nerve cords in such taxa supports the hypothesis that these evolved independently in disparate bilaterian clades.


Assuntos
Evolução Biológica , Fósseis , Animais , Biota , Sistema Nervoso , Filogenia
18.
Proc Biol Sci ; 288(1942): 20202618, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33402067

RESUMO

Precambrian filamentous microfossils are common and diverse. Nevertheless, their taxonomic assignment can be difficult owing to their overall simple shapes typically lacking in diagnostic features. Here, we report in situ communities of well-preserved, large filamentous impressions from the Ediacaran Itajaí Basin (ca 563 Ma) of Brazil. The filaments are uniserial (unbranched) and can reach up to 200 µm in width and up to 44 mm in length. They occur as both densely packed or sparsely populated surfaces, and typically show a consistent orientation. Although simple in shape, their preferred orientation suggests they were tethered to the seafloor, and their overall flexibility (e.g. bent, folded and twisted) supports a biological (rather than sedimentary) affinity. Biometric comparisons with modern filamentous groups further support their biological affinity, suggesting links with either large sulfide-oxidizing bacteria (SOB) or eukaryotes. Other morphological and palaeoecological characteristics further corroborates their similarities with modern large filamentous SOB. Their widespread occurrence and association with complex Ediacaran macrobiota (e.g. frondose organisms, Palaeopascichnus) suggest that they probably played an important role in the ecological dynamics of these early benthic communities by providing firm substrates for metazoans to inhabit. It is further hypothesized that the dynamic redox condition in the latest Ediacaran, with the non-continuous rise in oxygen concentration and periods of hypoxia, may have created ideal conditions for SOB to thrive.


Assuntos
Eucariotos , Fósseis , Bactérias , Brasil , Oxirredução
19.
Top Cogn Sci ; 13(1): 25-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31564066

RESUMO

We propose that neurons and nervous systems evolved among thin, motile, microbe-eating animals during the Ediacaran period (635-543 million years ago). Spiking neurons evolved from epithelial cells around the margins of Ediacaran microbial mat grazers that initially specialized to detect weak bioelectric fields of nearby animals and to trigger rapid withdrawal movements. According to this scenario, nervous systems are a consequence of two preceding animal innovations, external digestion and motility, which have co-evolved in concert with nervous systems ever since. We suggest that fundamental characteristics of modern nervous systems can be explained by studying how nervous systems originated during the Ediacaran period, as natural computers for predictive statistical inference given event-based sense data.


Assuntos
Evolução Biológica , Fósseis , Animais , Humanos , Sistema Nervoso , Neurônios
20.
Geobiology ; 19(2): 105-124, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369021

RESUMO

The Ediacaran period coincides with the emergence of ancestral animal lineages and cyanobacteria capable of thriving in nutrient deficient oceans which together with photosynthetic eukaryotic dominance, culminated in the rapid oxygenation of the Ediacaran atmosphere. However, ecological evidence for the colonization of the Ediacaran terrestrial biosphere by photosynthetic communities and their contribution to the oxygenation of the biosphere at this time is very sparse. Here, we expand the repertoire of Ediacaran habitable environments to a specific microbial community that thrived in an extreme alkaline volcanic lake 571 Myr ago in the Anti-atlas of Morocco. The microbial fabrics preserve evidence of primary growth structures, comprised of two main microbialitic units, with the lower section consisting of irregular and patchy thrombolytic mesoclots associated with composite microbialitic domes. Calcirudite interbeds, dominated by wave-rippled sandy calcarenites and stromatoclasts, fill the interdome troughs and seal the dome tops. A meter-thick epiclastic stromatolite bed grading upwards from a dominantly flat to wavy laminated base, transitions into low convex laminae consisting of decimeter to meter-thick dome-shaped stromatolitic columns, overlies the thrombolitic and composite microbialitic facies. Microbialitic beds constructed during periods of limited clastic input, and underlain by coarse-grained microbialite-derived clasts and by the wave-rippled calcarenites, suggest high-energy events associated with lake expansion. High-resolution microscopy revealed spherulitic aggregates and structures reminiscent of coccoidal microbial cell casts and mineralized extra-polymeric substances (EPS). The primary fabrics and multistage diagenetic features, represented by active carbonate production, photosynthesizing microbial communities, photosynthetic gas bubbles, gas escape structures, and tufted mats, suggest specialized oxygenic photosynthesizers thriving in alkaline volcanic lakes, contributed toward oxygen variability in the Ediacaran terrestrial biosphere.


Assuntos
Cianobactérias , Microbiota , Animais , Sedimentos Geológicos , Lagos , Marrocos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA