Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39314015

RESUMO

We study the capacity fade rate of a flow battery utilizing 2,6-dihydroxyanthraquinone (DHAQ) and its dependence on hydroxide concentration, state of charge, cutoff voltages for the discharge step and for the electrochemical regeneration (oxidation of decomposition compounds back to active species) step, and the period of performing the electrochemical regeneration events. Our observations confirm that the first decomposition product, 2,6-dihydroxyanthrone (DHA), is stable, but after electro-oxidative dimerization, the anthrone dimer decomposes. We identify conditions for which there is little time after dimerization until the dimer is rapidly reoxidized electrochemically to form DHAQ. Combining these approaches, we decrease the fade rate to 0.02%/day, which is 18 times lower than the lowest rate reported previously of 0.38%/day, and over 200 times lower than the value under standard cycling conditions of 4.3%/day. The findings and their mechanistic interpretation are expected to extend the lifetime and enhance the effectiveness of in situ electrochemical regeneration for other electroactive species with finite lifetimes.

2.
Chemosphere ; 346: 140544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907169

RESUMO

2D-Ti3C2Tx MXene nanosheets intercalated with sodium ions (SI-Ti3C2Tx) were synthesized and utilized in simultaneous adsorption and electrochemical regeneration with ciprofloxacin (CPX). The primary focus of this study is to investigate the long-term stability of SI-Ti3C2Tx MXene and to propose the underlying regeneration mechanisms. The successful synthesis of Ti3AlC2, Ti3C2Tx MXene, and SI-Ti3C2Tx MXene was confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Electrochemical regeneration parameters such as charge passed, regeneration time, current density, and electrolyte composition were optimized with values of 787.5 C g-1, 7.5 min, 10 mA cm-2, and 2.5w/v% sodium chloride, respectively, enabling the complete regeneration of the SI-Ti3C2Tx MXene. In addition, the electrochemical regeneration significantly enhanced CPX removal from the SI-Ti3C2Tx MXene owing to partial amorphization, disorderliness, increased functional groups, delamination, and defect creation in the structure. Thus, the synthesized nano-adsorbent has proven helpful in practical water treatment with optimized electrochemical regeneration processes.


Assuntos
Ciprofloxacina , Cloreto de Sódio , Adsorção , Espectroscopia Fotoeletrônica
3.
Carbohydr Polym ; 318: 121098, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479431

RESUMO

Sodium alginate (SA)-laden two-dimensional (2D) Ti3C2Tx MXene (MX) and MIL-101(Fe) (a type of metal-organic framework (MOF)) composites were prepared and used for the removal of naproxen (NPX), following the adsorption and electrochemical regeneration processes. The fixed-bed adsorption column studies were also conducted to study the process of removal of NPX by hydrogels. The number of interactions via which the MX-embedded SA (MX@SA) could adsorb NPX was higher than the number of pathways associated with NPX adsorption on the MIL-101(Fe)-embedded SA (MIL-101(Fe)@SA), and the MX and MIL-101(Fe) composite embedded SA (MX/MIL-101(Fe)@SA). The optimum parameters for the electrochemical regeneration process were determined: charge passed and current density values were 169.3 C g-1 and 10 mA cm-2, respectively, for MX@SA, and the charge passed and current density values were 16.7 C g-1 and 5 mA cm-2, respectively, for both MIL-101(Fe)@SA and MX/MIL-101(Fe)@SA. These parameters enabled excellent regeneration, consistent over multiple adsorption and electrochemical regeneration cycles. The mechanism for the regeneration of the materials was proposed that the regeneration of MX@SA and MIL-101(Fe)@SA involved the indirect electrooxidation process in the presence of OH radicals, and the regeneration of MX/MIL-101(Fe)@SA involved the indirect oxidation process in the presence of active chlorine species.

4.
Environ Res ; 227: 115723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003548

RESUMO

Three-dimensional multi-porous Iron Oxide/carbon (Fe2O3/C) composites derived from tamarind shell biomass were synthesized by a single-step co-pyrolysis technique and utilized for Paracetamol (PAC) dismissal in the combined adsorption, and advanced oxidation such as electrochemical regeneration techniques. The Fe2O3/C composites were prepared by different pyrolysis temperatures, and named as TS750 (without Fe2O3at 750 °C), MTS450 BCs (Low-450 °C), MTS600 BCs (Moderate-600 °C) and MTS750 BCs (high-750 °C), respectively. As-prepared Fe2O3/C composite was characterized by FE-SEM, XRD, BET, and XPS analysis. The specific surface area and the spatial interaction between the interlayers of Fe2O3 and C were significantly improved by increasing the pyrolysis temperatures from 450 to 750 °C, which improved the adsorption capacity of Fe2O3/C composites in terms of higher rate constants and chemisorption kinetics. The Pseudo-second-order kinetics model fitted in the adsorption test results of Fe2O3/C composites with the highest correlation co-efficiency. The Langmuir-isotherms model fitted in the adsorption test of the TS750 and MTS450 BCs. The Freundlich isotherms model is more fit with MTS600 and MTS750 BCs. Based on the isotherm results, the MTS750 BCs achieved 46.9 mg/g of maximum PAC adsorption capacity. The optimized MTS750 composites could be completely recovered by using an advanced electrochemical oxidation regeneration approach within 180 min. Also, with the adsorption and recovery process, the TOC removal rate improved to ∼79.4%. After the 6th cycle electrochemical oxidation process, the obtained results of the re-adsorption test showed the stabile adsorption activity of the sorbent material. The data outcomes herein propose that this type of combined adsorption and electrochemical approach will be useful in commercial water treatment plants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ferro/química , Acetaminofen , Adsorção , Poluentes Químicos da Água/análise , Carbono , Cinética , Purificação da Água/métodos
5.
Electrochim Acta ; 4412023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36874445

RESUMO

The growing ubiquity of recalcitrant organic contaminants in the aqueous environment poses risks to effective and efficient water treatment and reuse. A novel three-dimensional (3D) electrochemical flow-through reactor employing activated carbon (AC) encased in a stainless-steel (SS) mesh as a cathode is proposed for the removal and degradation of a model recalcitrant contaminant p-nitrophenol (PNP), a toxic compound that is not easily biodegradable or naturally photolyzed, can accumulate and lead to adverse environmental health outcomes, and is one of the more frequently detected pollutants in the environment. As a stable 3D electrode, granular AC supported by a SS mesh frame as a cathode is hypothesized to 1) electrogenerate H2O2 via a 2-electron oxygen reduction reaction on the AC surface, 2) initiate decomposition of this electrogenerated H2O2 to form hydroxyl radicals on catalytic sites of the AC surface 3) remove PNP molecules from the waste stream via adsorption, and 4) co-locate the PNP contaminant on the carbon surface to allow for oxidation by formed hydroxyl radicals. Additionally, this design is utilized to electrochemically regenerate the AC within the cathode that is significantly saturated with PNP to allow for environmentally friendly and economic reuse of this material. Under flow conditions with optimized parameters, the 3D AC electrode is nearly 20% more effective than traditional adsorption in removing PNP. 30 grams of AC within the 3D electrode can remove 100% of the PNP compound and 92% of TOC under flow. The carbon within the 3D cathode can be electrochemically regenerated in the proposed flow system and design thereby increasing the adsorptive capacity by 60%. Moreover, in combination with continuous electrochemical treatment, the total PNP removal is enhanced by 115% over adsorption. It is anticipated this platform holds great promises to eliminate analogous contaminants as well as mixtures.

6.
Environ Sci Pollut Res Int ; 30(18): 53648-53661, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36862291

RESUMO

Removal of emerging contaminants, such as antibiotics, from wastewater by adsorption is a simple, low-cost, and high-performance process; however, regeneration and reuse of the exhausted adsorbent are necessary to make the process economically viable. This study aimed to investigate the possibility of electrochemical-based regeneration of clay-type materials. For this, the calcined Verde-lodo (CVL) clay was saturated with the antibiotics ofloxacin (OFL) and ciprofloxacin (CIP) in one-component systems by an adsorption process and then subjected to photo-assisted electrochemical oxidation (0.45 A, 0.05 mol/L NaCl, UV-254 nm, and 60 min), which promotes both pollutant degradation and adsorbent regeneration. The external surface of the CVL clay was investigated by X-ray photoelectron spectroscopy before and after the adsorption process. The influence of regeneration time was evaluated for the CVL clay/OFL and CVL clay/CIP systems, and the results demonstrate high regeneration efficiencies after 1 h of photo-assisted electrochemical oxidation. Clay stability during regeneration was investigated by four successive cycles in different aqueous matrices (ultrapure water, synthetic urine, and river water). The results indicated that the CVL clay is relatively stable under the photo-assisted electrochemical regeneration process. Furthermore, CVL clay was able to remove antibiotics even in the presence of natural interfering agents. The hybrid adsorption/oxidation process applied here demonstrated the electrochemical-based regeneration potential of CVL clay for the treatment of emerging contaminants, since it can be operated quickly (1h of treatment) and with lower consumption of energy (3.93 kWh kg-1) than the traditional method of thermal regeneration (10 kWh kg-1).


Assuntos
Bentonita , Poluentes Químicos da Água , Argila/química , Bentonita/química , Ciprofloxacina , Ofloxacino , Adsorção , Antibacterianos , Água , Poluentes Químicos da Água/análise , Cinética
7.
Chemosphere ; 308(Pt 1): 136189, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037956

RESUMO

In the present study, we investigate the regeneration efficiency of Rhodamine B (RhB)-saturated granular activated carbon (GAC) in an electrochemical regeneration system by using a 9,10-anthraquinone-2-sulfonic acid/polypyrrole modified graphite plate (AQS/PPy-GP) cathode. The response surface methodology based on the Box-Behnken design (RSM-BBD) approach was used to optimize regeneration parameters, whereby the optimum condition of the independent variables was as follows: applied current = 155 mA, concentration of supporting electrolyte = 0.13 M, and regeneration time = 7 h. The electrochemical regeneration system with the AQS/PPy-GP electrode achieved high regeneration efficiency and significantly reduced energy consumption. H2O2 concentration generated in the electrolysis system was notably increased, and the time of complete degradation of organics was shortened by 25% compared to the electrode without modification. The mechanism for RhB degradation was proposed as AQS acting as a catalyst to promote the formation of H2O2. The regeneration study showed that AQS/PPy-GP cathode had appreciable reusability for GAC regeneration with a regeneration efficiency of 76.6% after 8 regeneration cycles. In summary, the electrochemical regeneration based on AQS/PPy-GP cathode would have practical industrial applications in treating spent activated carbons.


Assuntos
Grafite , Antraquinonas , Carvão Vegetal , Eletrodos , Peróxido de Hidrogênio , Polímeros , Pirróis
8.
Chemosphere ; 307(Pt 1): 135767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35868528

RESUMO

Two-dimensional (2D) Ti3C2Tx transition metal carbide (MXene) nanosheets intercalated with sodium ions (SI-Ti3C2Tx MXene) were used in the adsorption and electrochemical regeneration process for removal of the antidiabetic drug metformin (MF) as a model emerging pollutant. After MF adsorption, SI-Ti3C2Tx MXene oxidized the MF on its surface through its electrocatalytic activity at very low current density and cell potential. For complete oxidation the optimum parameters were 0.525 C g-1, 0.005 mA cm-2, and pH 6 in absence of NaCl or 26.25 C g-1 and 0.5 mA cm-2 in the presence of 2.5 w/v% NaCl. The overall regeneration of SI-Ti3C2Tx is governed by a combined mechanism, i.e., desorption followed by degradation. The degradation mechanism, such as direct electron transfer or indirect oxidation, depends on the applied operating conditions. Thus, the investigation suggests that these 2D sheets are good nanoadsorbents as well as good electrocatalysts and proves their usefulness in practical water-treatment applications.


Assuntos
Poluentes Ambientais , Metformina , Hipoglicemiantes , Sódio , Cloreto de Sódio , Titânio , Água
9.
J Hazard Mater ; 417: 126160, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229403

RESUMO

The deep removal of quinoline from coking wastewater is a prerequisite for reducing its potential threat to environmental safety. Therefore, it is urgent to develop advanced materials for efficient removal of quinoline in wastewater. In this work, a nitrogen-doped hollow carbon nanosphere/graphene composite aerogel (HCNS/NGA) was prepared by in-situ reduction self-assembly strategy, in which HCNS prevents the agglomeration of graphene oxide (GO) nanosheets, and a special sphere-sheet mutual support structure is formed to ensure the structural stability. As-prepared HCNS/NGA exhibits large specific surface area, hierarchical pore structure, and excellent conductivity. Large cavity inside and hierarchically porous structure that primarily consists of micropores, resulting in high quinoline adsorption performance (138.37 ± 2.58 mg g-1 at 298 K). Furthermore, in a fixed-bed column adsorption system, the partition coefficient at 10% breakthrough reaches up to 35.19 mg g-1 µM-1. More importantly, HCNS/NGA, as a conductive monolithic sorbent, can realize easy solid-liquid separation, as well as efficient regeneration in situ by electrochemically assisted regeneration. After ten regeneration cycles, the adsorption capacity retention is 91.54%. In short, as an efficient adsorbent, HCNS/NGA has an enormous application potential in wastewater treatment.


Assuntos
Grafite , Nanosferas , Quinolinas , Carbono , Nitrogênio , Águas Residuárias
10.
Chemosphere ; 264(Pt 1): 128399, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33011480

RESUMO

The electrochemical regeneration of real spent activated carbons (AC) used in drinking water treatment plants was studied at different reactor scales. The electrochemical regeneration was carried out in a 6 g filter-press cell and a 3.5 kg batch reactor, allowing the scaling-up of the process between the two electrolytic reactors. The effect of the electrolyte, the divided/undivided compartment configuration and the current density were studied in the filter-press cell. The effect of compartment configuration and the influence of the regeneration time were studied in the scaled-up reactor. A current density of 0.025 A cm-2 was used and the electrodes were Pt/Ti as anode and Pt/Ti and stainless-steel as cathode. The ACs were characterized by N2 adsorption isotherms to analyse the recovery of porosity and TPD-MS to analyse the AC surface after the electrochemical treatment. In filter-press cell, a recovery of the surface area of 96% was achieved after 8 h of treatment, by introducing the AC in the cathodic compartment using 0.05 M H2SO4 solution as electrolyte. In the 3.5 kg electrochemical reactor, 95% of the pristine AC surface area was recovered. Thus, electrochemical methods can provide a green alternative to the regeneration of spent AC.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Eletrodos
11.
Biosens Bioelectron ; 175: 112918, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383430

RESUMO

The accurate detection of hydrogen peroxide (H2O2)-involved metabolites plays a significant role in the early diagnosis of metabolism-associated diseases, whereas most of current metabolite-sensing systems are often hindered by low sensitivity, interference of coexisting species, or tedious preparation. Herein, an electrochemistry-regenerated surface-enhanced Raman scattering (SERS) sensor was developed to serve as a universal platform for detecting H2O2-involved metabolites. The SERS sensor was constructed by modifying newly synthesized 2-mercaptohydroquinone (2-MHQ) molecules on the surface of gold nanoparticles (AuNPs) that were electrochemically predeposited on an ITO electrode. Metabolites were detected through the changes in the SERS spectrum as a result of the reaction of 2-MHQ with H2O2 induced by the metabolites. Combining the superiority of SERS fingerprint identification and the specificity of the related enzymatic reactions producing H2O2, the designed SERS sensor was highly selective in detecting glucose and uric acid as models of H2O2-involved metabolite with limits of detection (LODs) of 0.159 µM and 0.0857 µM, respectively. Moreover, the sensor maintained a high SERS activity even after more than 10 electrochemical regenerations within 2 min, demonstrating its effectiveness for the rapid detection of various metabolites with electrochemistry-driven regulation. Importantly, the presented SERS sensor showed considerable practicability for the detection of metabolites in real serum samples. Accordingly, the SERS sensor is a new detection platform for H2O2-involved metabolites detection in biological fluids, which may aid the early diagnosis of metabolism-related diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Peróxido de Hidrogênio , Peróxidos , Análise Espectral Raman
12.
Chem Asian J ; 15(24): 4256-4270, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33164351

RESUMO

NAD is a cofactor that maintains cellular redox homeostasis and has immense industrial and biological significance. It acts as an enzymatic mediator in several biocatalytic electrochemical reactions and undergoes oxidation/reduction to form NAD+ or NADH, respectively. The NAD redox couple (NAD+ /NADH) mostly exists in enzyme-assisted metabolic reactions as a coenzyme during which electrons and protons are transferred. NADH shuttles these charges between the enzyme and the substrate. In order to understand such complex metabolic reactions, it is vital to study the bio-electrochemistry of NADH. In addition, the regeneration of NADH in industries has attracted significant attention due to its vast usage and high cost. To make biocatalysis economically viable, primary methods of NADH regeneration including enzymatic, chemical, photochemical and electrochemical methods are widely used. This review is mainly focused on the electrochemical reduction of NAD+ to NADH with specific details on the mechanism and kinetics of the reaction. It provides emphasis on the different routes (direct and mediated) to electrochemically regenerate NADH from NAD+ highlighting the NAD dimer formation. Also, it describes the electrocatalysts developed until now and the scope for development in this area of research.


Assuntos
Técnicas Eletroquímicas , NAD/química , Biocatálise , Elétrons , Glicólise , Cinética , Oxirredução
13.
Chemosphere ; 241: 125020, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31614314

RESUMO

A nanocomposite of graphene and titanium dioxide (G/TiO2) was prepared using the sol-gel method for use in an electrochemical adsorption/regeneration process. The effect of annealing temperature on electrochemical characteristics of the nanocomposites was investigated by cyclic voltammetry and constant current electrochemical regeneration, using methylene blue (MB) as the adsorbate. The G/TiO2 could be regenerated more rapidly and with less corrosion than the bare graphene. The G/TiO2 annealed at 400 °C had a higher proportion of anatase phase TiO2 (ca. 7% rutile TiO2) compared to that annealed at 500 °C (ca. 40% rutile TiO2). Cyclic voltammetry indicated that the G/TiO2 annealed at 400 °C had a higher activity for MB oxidation than the nanocomposite annealed at 500 °C. Similarly, the regeneration of MB loaded G/TiO2 annealed at 400 °C was much faster than for the nanocomposite annealed at 500 °C. Complete regeneration of the G/TiO2 annealed at 400 °C was obtained after an electrochemical charge of 21 C per mg of adsorbate. The G/TiO2 annealed at 400 °C was regenerated in half the time required for the bare graphene. TEM studies showed that the bare graphene was rapidly corroded, while corrosion was not observed for the G/TiO2 nanocomposites.


Assuntos
Corantes/química , Técnicas Eletroquímicas/métodos , Grafite , Nanocompostos/química , Reciclagem/métodos , Titânio , Adsorção , Corrosão , Eletrodos , Azul de Metileno/química
14.
Chemosphere ; 230: 596-605, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125888

RESUMO

In this study a process of adsorption and electrochemical regeneration was evaluated for its efficiency in removing low concentrations of emulsified oil from produced water, which is generated as a by-product from the thermal in-situ production of heavy oil. Adsorption behavior was investigated using synthetic model emulsions and samples of produced water; theoretical models were applied to the adsorption equilibrium and kinetics. It was demonstrated that the rate of the adsorption process was controlled by external mass transport, with no contribution from intra-particle diffusion. The non-porous structure of the Graphite Intercalation Compound (GIC) adsorbent led to effective and fast adsorption of oil in less than 30 min. Based on the cryo-SEM imaging and EDX phase mapping, the underlying adsorption mechanism was envisioned in the frame of adhesion and spreading of the emulsified oil droplets on the surface of the predominately hydrophobic GIC surface. The adsorptive capacity of the GIC was 100% recoverable by electrochemical regeneration. Energy consumption for the adsorbent regeneration process was found to be 22 kWh per kg of COD removed for treatment of the synthetic emulsion and 36 kWh per kg of COD for produced water.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Hidrocarbonetos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Teóricos , Propriedades de Superfície , Águas Residuárias/química
15.
Chemosphere ; 201: 807-815, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550575

RESUMO

This work compares the ability of physical and chemical treatments, namely adsorption and electrochemical advanced oxidation processes, to remove tyrosol from aqueous medium. Adsorption on graphene nanoplatelets (GNPs) performed much better than that with a graphite intercalation compound. Adsorption isotherms were found to follow the Freundlich model (R2 = 0.96), which is characteristic of a chemisorption process. Successful electrochemical regeneration enables 5 successive adsorption/regeneration cycles before corrosion of GNPs occurs. Other typical aromatic contaminants that may coexist with tyrosol can be also adsorbed on GNPs. Percentage of regeneration efficiency of GNPs showed a higher affinity towards Lewis acids group compounds and a lower one towards Lewis base. The treatment of 100 mL of 0.723 mM tyrosol solutions in non-chlorinated and chlorinated matrices at pH 3.0 was carried out by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF). Trials were made with a BDD anode and an air-diffusion cathode at 10-30 mA cm-2. Hydroxyl radicals formed at the anode from water oxidation and/or in the bulk from Fenton's reaction between added Fe2+ and generated H2O2, along with active chlorine produced in chlorinated medium, were the main oxidants. Tyrosol concentration always decayed following a pseudo-first-order kinetics and its mineralization rose as EO-H2O2 < EF < PEF, more rapidly in the chlorinated matrix. The potent photolysis of intermediates under UVA radiation explained the almost total mineralization achieved by PEF in the latter medium. The effect of current density and tyrosol content on the performance of all processes was examined.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Álcool Feniletílico/análogos & derivados , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Eletrodos , Peróxido de Hidrogênio/química , Oxirredução , Álcool Feniletílico/análise , Álcool Feniletílico/química , Fotólise , Águas Residuárias/química , Poluentes Químicos da Água/química
16.
Water Res ; 114: 237-245, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249215

RESUMO

In this work, two different reduced graphene oxide/iron oxide (rGO-IO) nanocomposites with different iron oxide loadings were fabricated using a one-step solvothermal method. The structure, properties and applications of the synthesized nanocomposites were evaluated with Raman spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. The iron oxide is in the form of magnetite (Fe3O4), so that the resultant adsorbent can readily be separated from the treated water using a magnetic field. The ability of the nanocomposites to remove methylene blue (MB) from water by adsorption was investigated. The highest adsorptive capacity observed was 39 mg g-1, for the composite containing 60 wt% iron oxide. The adsorptive capacity of the rGO-IO decreased to 26 mg g-1 when the mass fraction of iron oxide was increased to 75 wt%. Electrochemical regeneration of MB loaded rGO-IO was also investigated. The electrochemical regeneration was found to be rapid and with low electrical energy consumption relative to conventional adsorbents, due to the high electrical conductivity and nonporous surface of the rGO. A regeneration efficiency of 100% was obtained after 30 min of electrochemical treatment using a 2 mm thick bed of rGO-IO loaded with 39 mg g-1 MB, using a current density of 10 mA cm-2. Multiple adsorption-electrochemical regeneration cycles demonstrated that the surface of the rGO was modified leading to increase in the adsorptive capacity to around 80 mg g-1 after the second regeneration cycle. The morphology of the rGO was observed to change significantly after electrochemical regeneration, suggesting that the rGO based adsorbent materials could only be used for a few cycles.


Assuntos
Grafite/química , Azul de Metileno , Óxido Ferroso-Férrico , Óxidos/química , Regeneração
17.
Water Res ; 54: 170-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24568786

RESUMO

The disinfection performance of a unique process of adsorption combined with electrochemical treatment is evaluated. A flake graphite intercalation compound adsorbent was used, which is effective for the removal of organic contaminants and is amenable to anodic electrochemical regeneration. Adsorption of Escherichia coli on the graphite flake was followed by electrochemical treatment under a range of experimental conditions in a sequential batch reactor. The adsorption of E. coli cells was found to be a fast process and was capable of removing >99.98% of cells from solution after 5 min with a ca. 6.5-log10 reduction in E. coli concentration after 10 min. With electrochemical treatment the adsorbent could be reused, with no decrease in E. coli adsorption observed over five cycles. In the presence of chloride, >8.5-log10 reduction of E. coli concentration was achieved. Disinfection was found to be less effective in the absence of chloride. However, selection of appropriate operating conditions enabled effective disinfection in a chloride free system, reducing the potential for formation of disinfection by-products. The energy consumption required to achieve >8.5-log10 disinfection was 2-7 kWh m(-3).


Assuntos
Desinfecção/métodos , Técnicas Eletroquímicas/métodos , Microbiologia da Água , Água , Adsorção , Técnicas de Cultura Celular por Lotes , Cloro/análise , Eletricidade , Escherichia coli/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Fatores de Tempo
18.
J Environ Sci (China) ; 25 Suppl 1: S77-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078844

RESUMO

Electrochemical in situ regeneration of granular activated carbon (GAC) saturated with phenol was experimentally investigated using a three-dimensional electrode reactor with titanium filter electrode arrays. The feasibility of the electrochemical regeneration has been assessed by monitoring the regeneration efficiency and chemical oxygen demand (COD). The influence of the applied current, the effluent flow rate, and the effluent path of the electrochemical cell have been systematically studied. Under the optimum conditions, the regeneration efficiency of GAC could reach 94% in 2 hr, and no significant declination was observed after five-time continuous adsorption-regeneration cycles. The adsorption of organic pollutants was almost completely mineralized due to electrochemical oxidation, indicating that this regeneration process is much more potentially cost-effective for application.


Assuntos
Eletroquímica , Adsorção , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal/química , Eletricidade , Eletrodos , Reologia , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA