Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38422222

RESUMO

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

2.
ACS Appl Mater Interfaces ; 16(2): 2216-2230, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170822

RESUMO

The development of LiNi0.8Mn0.1Co0.1O2 (NMC811) as a cathode material for high-energy-density lithium-ion batteries (LIBs) intends to address the driving limitations of electric vehicles. However, the commercialization of this technology has been hindered by poor cycling stability at high cutoff voltages. The potential instability and drastic capacity fade stem from irreversible parasitic side reactions at the electrode-electrolyte interface. To address these issues, a stable nanoscale lithium fluoride (LiF) coating is deposited on the NMC811 electrode via atomic layer deposition. The nanoscale LiF coating diminishes the direct contact between NMC811 and the electrolyte, suppressing the detrimental parasitic reactions. LiF-NMC811 delivers cycling stability superior to uncoated NMC811 with high cutoff voltage for half-cell (3.0-4.6 V vs Li/Li+) and full-cell (2.8-4.5 V vs graphite) configurations. The structural, morphological, and chemical analyses of the electrodes after cycling show that capacity decline fundamentally arises from the electrode-electrolyte interface growth, irreversible phase transformation, transition metal dissolution and crossover, and particle cracking. Overall, this work demonstrates that LiF is an effective electrode coating for high-voltage cycling without compromising rate performance, even at high discharge rates. The findings of this work highlight the need to stabilize the electrode-electrolyte interface to fully utilize the high-capacity performance of NMC811.

3.
Biomater Adv ; 157: 213736, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128170

RESUMO

Cochlear implantation (CI) is the primary intervention for patients with sensorineural hearing loss to restore their hearing. However, approximately 90 % of CI recipients experience unexpected fibrosis around the inserted electrode arrays due to acute and chronic inflammation. This fibrosis leads to progressive residual hearing loss. Addressing this complication is crucial for enhancing CI outcomes, yet an effective treatment has not yet been found. In this study, we developed a multifunctional dexamethasone (DXM)-loaded polytrimethylene carbonate (PTMC) electrode coating to mitigate inflammatory reactions and fibrosis after CI. This thin and flexible coating could preserve the mechanical performance of the electrode and reduce the implantation resistance for CI. The in vitro release studies demonstrated the DXM-PTMC coating's efficient drug loading and sustained release capability over 90 days. DXM-PTMC also showed long-term stability, high biocompatibility, and effective anti-inflammatory effects in vitro and in vivo. Compared with the uncoated group, DXM-PTMC coating significantly inhibited the expression of inflammatory factors, such as NO, TNF-α, IL-1ß, and IL-6. DXM-PTMC coating suppressed fibrosis in rat implantation models for 3 weeks by reducing both acute and chronic inflammation. Our findings suggest that DXM-PTMC coating is a novel strategy to improve the outcomes of CI.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Ratos , Animais , Implantes Cocleares/efeitos adversos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Inflamação/tratamento farmacológico , Fibrose
4.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960439

RESUMO

The design of a glazing package containing heating glass can make a window a radiator simultaneously. For such bulky glass to act as an effective radiator simultaneously, it should be possible to provide a constant temperature over the entire surface. The continuous surface temperature of the glass depends on the uniformity of the surface resistance of the resistive layer. This paper will demonstrate the testing of heating glass parameters using a specialised apparatus. The research will mainly focus on measuring the value and distribution of the surface resistance of the transparent heating layer. A thermographic study will verify the results. As the heating glass will be subjected to a toughening process, the effect of the toughening process parameters on the degradation of the transparent heating film will be investigated.

5.
Front Neurosci ; 17: 1297046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161797

RESUMO

Objective: The guinea pig serves as a well-established animal model for inner ear research, offering valuable insights into the anatomy, physiology, and therapeutic interventions of the auditory system. However, the heterogeneity of results observed in both in-vivo experiments and clinical studies poses challenges in understanding and optimizing pharmacotherapy outcomes. This heterogeneity may be due to individual differences in the size of the guinea pig cochlea and thus in the volume of the scala tympani (ST), which can lead to different drug concentrations in the ST, a fact that has been largely overlooked thus far. To address this issue, we aimed to develop an approach for calculating the individual volume of perilymph within the ST before and after cochlear implant insertion. Method: In this study, high-resolution µCT images of a total of n = 42 guinea pig temporal bones were used to determine the volume of the ST. We compared fresh, frozen, and fixed tissues from both colored and albino strains to evaluate the potential influence of tissue condition and strain on the results. Results: Our findings demonstrate a variability in mean ST volume with a relative standard deviation (RSD) of 14.7%, comparable to studies conducted with humans (range RSD: 5 to 20%). This indicates that the guinea pig cochlea exhibits similar variability to that of the human cochlea. Consequently, it is crucial to consider this variability when designing and conducting studies utilizing the guinea pig as an animal model. Furthermore, we successfully developed a tool capable of estimating ST volume without the need for manual segmentation, employing two geometric parameters, basal diameter (A) and width (B) of the cochlea, corresponding to the cochlear footprint. The tool is available for free download and use on our website. Conclusion: This novel approach provides researchers with a valuable tool to calculate individual ST volume in guinea pigs, enabling more precise dosing strategies and optimization of drug concentrations for pharmacotherapy studies. Moreover, our study underscores the importance of acknowledging and accounting for inter-individual variability in animal models to enhance the translational relevance and applicability of research outcomes in the field of inner ear investigations.

6.
Materials (Basel) ; 15(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744321

RESUMO

An amperometric sensor was developed by depositing a film coating of hydroxyapatite (HA)/L-lysine (Lys) composite material on a glassy carbon electrode (GCE). It was applied for the detection of Nile blue A (NBA). Hydroxyapatite was obtained from snail shells and its structural properties before and after its combination with Lys were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The coupling of Lys to HA was attributed to favorable interaction between negatively charged -COO- groups of Lys and divalent ions Ca2+ of HA. Electrochemical investigations pointed out the improvement in sensitivity of the GCE/Lys/HA sensor towards the detection of NBA in solution. The dependence of the peak current and potential on the pH, scan rate, and NBA concentration was also investigated. Under optimal conditions, the GCE/Lys/HA sensor showed a good reproducibility, selectivity, and a NBA low detection limit of 5.07 × 10-8 mol L-1. The developed HA/Lys-modified electrode was successfully applied for the detection of NBA in various water samples.

7.
Front Neurosci ; 15: 761525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803592

RESUMO

Active implantable neurological devices like deep brain stimulators have been used over the past few decades to treat movement disorders such as those in people with Parkinson's disease and more recently, in psychiatric conditions like obsessive compulsive disorder. Electrode-tissue interfaces that support safe and effective targeting of specific brain regions are critical to success of these devices. Development of directional electrodes that activate smaller volumes of brain tissue requires electrodes to operate safely with higher charge densities. Coatings such as conductive hydrogels (CHs) provide lower impedances and higher charge injection limits (CILs) than standard platinum electrodes and support safer application of smaller electrode sizes. The aim of this study was to examine the chronic in vivo performance of a new low swelling CH coating that supports higher safe charge densities than traditional platinum electrodes. A range of hydrogel blends were engineered and their swelling and electrical performance compared. Electrochemical performance and stability of high and low swelling formulations were compared during insertion into a model brain in vitro and the formulation with lower swelling characteristics was chosen for the in vivo study. CH-coated or uncoated Pt electrode arrays were implanted into the brains of 14 rats, and their electrochemical performance was tested weekly for 8 weeks. Tissue response and neural survival was assessed histologically following electrode array removal. CH coating resulted in significantly lower voltage transient impedance, higher CIL, lower electrochemical impedance spectroscopy, and higher charge storage capacity compared to uncoated Pt electrodes in vivo, and this advantage was maintained over the 8-week implantation. There was no significant difference in evoked potential thresholds, signal-to-noise ratio, tissue response or neural survival between CH-coated and uncoated Pt groups. The significant electrochemical advantage and stability of CH coating in the brain supports the suitability of this coating technology for future development of smaller, higher fidelity electrode arrays with higher charge density requirement.

8.
ACS Appl Mater Interfaces ; 13(36): 42773-42790, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34491036

RESUMO

Nickel-rich layered oxides, such as LiNi0.6Co0.2Mn0.2O2 (NMC622), are high-capacity electrode materials for lithium-ion batteries. However, this material faces issues, such as poor durability at high cut-off voltages (>4.4 V vs Li/Li+), which mainly originate from an unstable electrode-electrolyte interface. To reduce the side reactions at the interfacial zone and increase the structural stability of the NMC622 materials, nanoscale (<5 nm) coatings of TiOx (TO) and LixTiyOz (LTO) were deposited over NMC622 composite electrodes using atomic layer deposition. It was found that these coatings provided a protective surface and also reinforced the electrode structure. Under high-voltage range (3.0-4.6 V) cycling, the coatings enhance the NMC electrochemical behavior, enabling longer cycle life and higher capacity. Cyclic voltammetry, X-ray photoelectron spectroscopy, and X-ray diffraction analyses of the coated NMC electrodes suggest that the enhanced electrochemical performance originates from reduced side reactions. In situ dilatometry analysis shows reversible volume change for NMC-LTO during the cycling. It revealed that the dilation behavior of the electrode, resulting in crack formation and consequent particle degradation, is significantly suppressed for the coated sample. The ability of the coatings to mitigate the electrode degradation mechanisms, illustrated in this report, provides insight into a method to enhance the performance of Ni-rich positive electrode materials under high-voltage ranges.

9.
J Neural Eng ; 18(5)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34428753

RESUMO

Objective. Neural interfaces based on carbon fiber (CF) electrodes have demonstrated key positive attributes such as minimal foreign body response and mechanical strength to self-insert in brain tissue. However, carbon does not form a low impedance electrode interface with neural tissue. Electrodeposited platinum iridium (PtIr) has been used to improve electrode interface properties for metallic bioelectrodes.Approach. In this study, a PtIr electrodeposition process has been performed on CF microelectrode arrays to improve the interfacial properties of these arrays. We study the film morphology and composition as well as electrode durability and impedance.Results. A PtIr coating with a composition of 70% Pt, 30% Ir and a thickness of ∼400 nm was observed. Pt and Ir were evenly distributed within the film. Impedance was decreased by 89% @ 1 kHz. Accelerated soak testing in a heated (T= 50∘C) saline solution showed impedance increase (@ 1 kHz) of ∼12% after 36 days (89 equivalent) of soaking.


Assuntos
Irídio , Platina , Fibra de Carbono , Impedância Elétrica , Galvanoplastia , Microeletrodos
10.
Drug Deliv ; 28(1): 1673-1684, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34347538

RESUMO

With dexamethasone as the model drug and polycaprolactone (PCL) as the carrier material, a drug delivery coating for cochlear electrodes was prepared, to control cochlear fibrosis caused by cochlear implantation. A dexamethasone/poly (ε-caprolactone)-based electrode coating was prepared using the impregnation coating method. Preparation parameters were optimized, yielding 1 impregnation instance, impregnation time of 10 s, and PCL concentration of 10%. The coating was characterized in vitro using scanning electron microscopy, a universal machine, high-performance liquid chromatography, and CCK-8. The surface was porous and uniformly thick (average thickness, 48.67 µm)-with good flexibility, long-term slow drug release, and optimal drug concentration-and was biologically safe. The experimental results show that PCL is an ideal controlled-release material for dexamethasone as a drug carrier coating for cochlear implants.


Assuntos
Anti-Inflamatórios/administração & dosagem , Implantes Cocleares , Dexametasona/administração & dosagem , Fibrose/prevenção & controle , Poliésteres/química , Animais , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis , Preparações de Ação Retardada , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Porosidade , Ratos , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 12(13): 14855-14865, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32162910

RESUMO

Bioelectronic devices, interfacing neural tissue for therapeutic, diagnostic, or rehabilitation purposes, rely on small electrode contacts in order to achieve highly sophisticated communication at the neural interface. Reliable recording and safe stimulation with small electrodes, however, are limited when conventional electrode metallizations are used, demanding the development of new materials to enable future progress within bioelectronics. In this study, we present a versatile process for the realization of nanostructured platinum (nanoPt) coatings with a high electrochemically active surface area, showing promising biocompatibility and providing low impedance, high charge injection capacity, and outstanding long-term stability both for recording and stimulation. The proposed electrochemical fabrication process offers exceptional control over the nanoPt deposition, allowing the realization of specific coating morphologies such as small grains, pyramids, or nanoflakes, and can moreover be scaled up to wafer level or batch fabrication under economic process conditions. The suitability of nanoPt as a coating for neural interfaces is here demonstrated, in vitro and in vivo, revealing superior stimulation performance under chronic conditions. Thus, nanoPt offers promising qualities as an advanced neural interface coating which moreover extends to the numerous application fields where a large (electro)chemically active surface area contributes to increased efficiency.


Assuntos
Eletrônica , Nanoestruturas/química , Platina/química , Animais , Materiais Biocompatíveis/química , Encéfalo/fisiologia , Estimulação Elétrica , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Razão Sinal-Ruído
12.
ACS Appl Bio Mater ; 3(7): 4388-4397, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025437

RESUMO

The mechanical mismatch between implantable interfaces and neural tissues may be reduced by employing soft polymeric materials. Here, we report on a simple strategy to prepare and pattern a soft electrode coating of neural interfacing devices based on a screen-printable conducting hydrogel. The coating formulation, based on polyacrylamide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, is suitable to additive manufacturing and exhibits excellent adhesion to polydimethylsiloxane, an elastomer commonly used as a substrate in soft neural interfaces. The soft conductive coating displays a tunable elastic modulus in the 10-100 kPa range and electrochemical properties on a par with stiff conductive inks while supporting good neural cell attachment and proliferation in vitro. Next, the soft printable hydrogel is integrated within a 4 × 4 microelectrode array for electrocorticography with 250 µm-diameter contacts. Acute recording of cortical local field potentials and electrochemical characterization preimplantation and postimplantation highlight the stability of the soft organic conductor. The overall robustness of the soft coating and its patterning method provide a promising route for a range of implantable bioelectronic applications.

13.
Mater Sci Eng C Mater Biol Appl ; 90: 16-26, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853079

RESUMO

Cochlear inflammatory response after cochlear implantation (CI) is an important mechanism for implantation trauma and hearing loss. The hearing loss was also caused by damage to auditory hair cells (HCs), whereas ion homeostasis within the cochlea can ensure survival of HCs. In our study, pure hyaluronic acid (HA) was crosslinked with 1, 4-butanediol diglycidyl ether (BDDE) and the successful preparation of the cross-linked hydrogel (CHA) was confirmed by rheological characteristics and FTIR spectra. Artificial perilymph (APL) was prepared to simulate the ion homeostasis microenvironment within scala tympani of human cochlear, and served as the major component of artificial perilymph soaked CHA (APL-CHA). The conductivity experiment indicated that APL-CHA is more suitable to the requirements of the electrical conductivity in scala tympani. The electrode coating process found that the extrusion coating method have advantages of controllable adhesive capacity of APL-CHA, uniform coating thickness and smooth surface as compared to common method. Due to CI surgery application requirement, optimization of coating process was selected as follows: extrusion coating method, degree of 3.6 vol%, pinhole diameter of 32G (110 µm), pressure of 200 ±â€¯15.81 Psi. Controlled dexamethasone 21-phosphate sodium salt (DSP) release of 20 days could be demonstrated using the hydrogel filled reservoir via a validated HPLC method. The morphological structure of CHA showed different sizes of porous structure among APL-CHA provided structural basis for drug delivery. L929 fibroblasts culture and Spiral Ganglion Neuron Explants culture results revealed that APL-CHA possesses fine biological compatibility. APL-CHA shows a promising application in CI surgery and has great potential in preventing hearing loss with well simulation of ion homeostasis within the cochlear, local DSP delivery for target anti-inflammatory, approximate conductivity within the scala tympani and optimization of electrode coating process.


Assuntos
Implante Coclear , Dexametasona/química , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Hidrogéis/química , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA