RESUMO
Regenerative medicine leverages the body's inherent regenerative capabilities to repair damaged tissues and address organ dysfunction. In orthopedics, this approach includes a variety of treatments collectively known as orthoregeneration, encompassing modalities such as prolotherapy, extracorporeal shockwave therapy, pulsed electromagnetic field therapy, therapeutic ultrasound, and photobiomodulation therapy, and orthobiologics like platelet-rich plasma and cell-based therapies. These minimally invasive techniques are becoming prominent due to their potential for fewer complications in orthopedic surgery. As regenerative medicine continues to advance, surgeons must stay informed about these developments. This paper highlights the current state of regenerative medicine in orthopedics and advocates for further clinical research to validate and expand these treatments to enhance patient outcomes.
RESUMO
Proliferation and migration of fibroblasts, keratinocytes, and endothelial cells are key events in the physiological process of wound healing. This process includes different but overlapping stages: hemostasis, inflammatory phase, the proliferative phase, and the remodeling phase. Traumatic brain injury (TBI) is defined as a mechanical insult to the brain from external mechanical force (primary injury), usually followed by the secondary injury including edema, inflammation, excitotoxicity, oxidative stress, or mitochondrial dysfunction. The process of tissue repair following TBI is based on the neuronal-glial interactions, where phagocytosis by microglia plays a crucial role. Low-frequency electromagnetic field (LF-EMF) has been shown to enhance tissue repair after TBI, however, there are limited studies investigating the effects of LF-EMF on the proliferation and migration of keratinocytes, fibroblasts, VSMCs, and endothelial cells in the context of wound healing and on neuronal cells and microglia in relation to healing after TBI. Better understanding of the effects of LF-EMF on the proliferation, migration, and differentiation of these cells is important to enhance tissue healing after injury. This review article comprehensively discussed the effect of EMF/LF-EMF on these cells. Results published by different authors are hardly comparable due to different methodological approach and experimental settings. EMF promotes migration and proliferation of fibroblasts, keratinocytes and endothelial cells (EC), and thus could improve wound healing. The pilot study preformed on a large animal model of TBI suggests anti-inflammatory effects of EMF stimulation following TBI. Therefore, EMF is recognized as a potential therapeutic option to accelerate the wound healing and improve cellular recovery and function after TBI. Nonetheless, future studies are needed to define the optimal parameters of EMF stimulation in terms of frequency or duration of exposure.
RESUMO
Compromised mitochondrial electron transport chain (ETC) activities are associated with depression in humans and rodents. However, the effects of the enhancement of mitochondrial ETC activities on depression remain elusive. We recently reported that an extremely low-frequency electromagnetic field (ELF-EMF) of as low as 10 µT induced hormetic activation of mitochondrial ETC complexes in human/mouse cultured cells and mouse livers. Chronic social defeat stress (CSDS) for 10 consecutive days caused behavioral defects mimicking depression in mice, and using an ELF-EMF for two to six weeks ameliorated them. CSDS variably decreased the mitochondrial ETC proteins in the prefrontal cortex (PFC) in 10 days, which were increased by an ELF-EMF in six weeks. CSDS had no effect on the mitochondrial oxygen consumption rate in the PFC in 10 days, but using an ELF-EMF for six weeks enhanced it. CSDS inactivated SOD2 by enhancing its acetylation and increased lipid peroxidation in the PFC. In contrast, the ELF-EMF activated the Sirt3-FoxO3a-SOD2 pathway and suppressed lipid peroxidation. Furthermore, CSDS increased markers for mitophagy, which was suppressed by the ELF-EMF in six weeks. The ELF-EMF exerted beneficial hormetic effects on mitochondrial energy production, mitochondrial antioxidation, and mitochondrial dynamics in a mouse model of depression. We envisage that an ELF-EMF is a promising therapeutic option for depression.
Assuntos
Depressão , Campos Eletromagnéticos , Mitocôndrias , Superóxido Dismutase , Animais , Camundongos , Mitocôndrias/metabolismo , Depressão/metabolismo , Depressão/terapia , Superóxido Dismutase/metabolismo , Masculino , Sirtuína 3/metabolismo , Córtex Pré-Frontal/metabolismo , Peroxidação de Lipídeos , Proteína Forkhead Box O3/metabolismo , Comportamento Animal/efeitos da radiação , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo , Estresse Psicológico/terapia , Transporte de Elétrons , Mitofagia , Modelos Animais de DoençasRESUMO
The rapid proliferation of wireless technologies in everyday environments demands the quick and precise estimation of electromagnetic field distribution. This distribution is commonly depicted through the electric field strength across various geographical areas. The objective of this research is to determine the most effective geospatial model for generating a national-level electric field strength map within the 30 MHz-6 GHz frequency range. To achieve this, we employed five different methodologies for constructing the electric field strength map. Four of these methodologies are based on Gaussian process regression, while the fifth utilizes the classical weighted-average method of the nearest neighbor. Our study focused on a country with a total area of 9251 km2, using a dataset comprising 3621 measurements. The findings reveal that Gaussian process spatial models, also known as Kriging models, generally outperform other methods when applied to spatial data. However, it was observed that, after excluding some outlier data points, the performance of the classical nearest neighbor models becomes comparable to that of the Gaussian process models. This indicates the potential for both approaches to be effective, depending on the data quality and the presence of outliers.
RESUMO
Pulsed electromagnetic field (PEMF) therapy is a potential non-invasive treatment to modulate immune responses and inhibit tumor growth. Cervical cancer (CC) is influenced by IL-37-mediated immune regulation, making PEMF therapy a potential strategy to impede CC progression. This study aimed to elucidate the effects of PEMF on IL-37 regulation and its molecular mechanisms in CC. CC cell-xenografted mouse models, including IL-37 transgenic (IL-37tg) mice, were used to assess tumor growth through in vivo fluorescence imaging and analyze CC cell apoptosis via flow cytometry. TCGA-CESC transcriptome and clinical data were analyzed to identify key inflammation and immune-related genes. CD8+ T cell models were stimulated with PEMF, and apoptosis, oxidative stress, and inflammatory factor expression were analyzed through RT-qPCR, Western blot, and flow cytometry. PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis (p < 0.05). IL-37 interaction with SMAD3 impacted the p38/NF-κB signaling pathway, modulating CD8+ T cell activity and cytotoxicity. Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05). In vivo experiments with CC-bearing mice demonstrated that PEMF treatment downregulated IL-37 expression (p < 0.05), enhanced CD8+ T cell function, and inhibited tumor growth (p < 0.05). These molecular mechanisms were validated through RT-qPCR, Western blot, and immunohistochemistry. Thus, PEMF therapy inhibits CC progression by downregulating IL-37 and improving CD8+ T cell function via the SMAD3/p38/NF-κB signaling pathway.
RESUMO
Background: The exponential growth in mobile phone usage has raised concerns about electromagnetic field (EMF) exposure and its health risks. Blood pressure and BMI, which impair heart function due to decreased adrenoreceptor responsiveness, parasympathetic tone withdrawal, and increased sympathetic activity, may further exacerbate these risks. However, the effects of radiofrequency electromagnetic (RF-EM) exposure from mobile phones on electrocardiograms (ECGs) and heart rate variability (HRV) in individuals remain unclear. Purpose: Building upon our previous findings on HRV changes due to mobile phone proximity, this study is aimed at significantly enhancing the analytical approach used to assess the effects of mobile phones on cardiac parameters. This study exploits data from a previous study but with a different purpose. The aim of this study is twofold: (a) to examine whether exposure to mobile phones changes the five variables (P-R, QRS, QT, ST, and HR) in a multivariate manner and (b) to examine whether the blood pressure and/or the body mass index (BMI), which acts as a proxy for obesity, have an effect on the change of these five variables. For both aspects of the study, four cycles are performed. Method: We conducted multivariate analysis on previously collected electrical cardiac measurement data from 20 healthy male subjects exposed to mobile phone EMF, with the mobile phones placed at four different body locations. The one-sample Hotelling T 2 test on the mean vector of differences was utilised instead of multiple paired t-tests. This multivariate method comprehensively analyzes data features and accounts for variable correlations, unlike multiple univariate analyses. Given our small sample size, we employed the MMPC variable selection algorithm to identify predictor variables significantly related to mean changes. Results: Significant alterations in ECG intervals and heart rate were noted in the subjects before and after the first EMF exposure cycle, independent of their BMI. Notably, heart rate, P-R, and QRS intervals fell postexposure while QT and ST intervals increased. These changes were influenced by variations in systolic blood pressure, with BMI showing no significant effect. Conclusion: The observed modifications in cardiac electrical measurements due to mobile phone EMF exposure are attributed to the effects of EMF itself, with no impact from BMI on the extent of these changes.
RESUMO
Crocus sativus L. is a widely cultivated traditional plant for obtaining dried red stigmas known as "saffron," the most expensive spice in the world. The response of C. sativus to pre-sowing processing of corms with cold plasma (CP, 3 and 5 min), vacuum (3 min), and electromagnetic field (EMF, 5 min) was assessed to verify how such treatments affect plant performance and the quality and yield of herbal raw materials. The results show that applied physical stressors did not affect the viability of corms but caused stressor-dependent changes in the kinetics of sprouting, growth parameters, leaf trichome density, and secondary metabolite content in stigmas. The effect of CP treatment on plant growth and metabolite content was negative, but all stressors significantly (by 42-74%) increased the number of leaf trichomes. CP3 treatment significantly decreased the length and dry weight of flowers by 43% and 60%, respectively, while EMF treatment increased the length of flowers by 27%. However, longer CP treatment (5 min) delayed germination. Vacuum treatment improved the uniformity of germination by 28% but caused smaller changes in the content of stigma compounds compared with CP and EMF. Twenty-six compounds were identified in total in Crocus stigma samples by the HPLC-DAD method, including 23 crocins, rutin, picrocrocin, and safranal. Processing of Crocus corms with EMF showed the greatest efficiency in increasing the production of secondary metabolites in saffron. EMF increased the content of marker compounds in stigmas (crocin 4: from 8.95 to 431.17 mg/g; crocin 3: from 6.27 to 164.86 mg/g; picrocrocin: from 0.4 to 1.0 mg/g), although the observed effects on growth were neutral or slightly positive. The obtained findings indicate that treatment of C. sativus corms with EMF has the potential application for increasing the quality of saffron by enhancing the amounts of biologically active compounds.
Assuntos
Crocus , Campos Eletromagnéticos , Flores , Gases em Plasma , Crocus/crescimento & desenvolvimento , Crocus/metabolismo , Gases em Plasma/farmacologia , Flores/metabolismo , Flores/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Carotenoides/metabolismoRESUMO
Pulsed electromagnetic field (PEMF) therapy, a noninvasive treatment, has shown promise in mitigating nerve damage. However, unaccustomed exercises, such as eccentric contractions (ECCs), can damage both muscle and nerve tissue. This study investigated whether magnetic stimulation (MS) with PEMF could aid in nerve recovery after ECCs in the elbow flexors. Twenty participants were randomly assigned to either a control (CNT) or an MS group. Following ECCs, we measured the latency of the M-wave in the musculocutaneous nerve as an indicator of nerve function. Additionally, isometric torque, range of motion, and muscle pain were assessed for muscle function. Interestingly, only the CNT group exhibited a significant increase in latency on Day 2 (p < 0.05). The MS group, on the other hand, displayed an earlier recovery trend in isometric torque, range of motion, and muscle soreness. Notably, muscle soreness significantly decreased immediately after MS treatment compared to pretreatment levels. These findings suggest that MS treatment can effectively attenuate nerve damage induced by ECCs exercise.
RESUMO
Alveolar bone remodeling during the retention phase is essential for successful orthodontic treatment. Pulsed electromagnetic field (PEMF) therapy is an adjunctive therapy for bone-related diseases that induces osteogenesis and prevents bone loss. This study aimed to examine the role of PEMF exposure during the retention phase of orthodontic treatment in alveolar bone remodeling. A total of 36 male Wistar rats were divided into control, PEMF 7, and PEMF 14 groups; a 50 g force nickel-titanium closed-coil spring was inserted to create mesial movement in the first molar for 21 d. Furthermore, the spring was removed, and the interdental space was filled with glass ionomer cement. Concurrently, rats were exposed to a PEMF at 15 Hz with a maximum intensity of 2.0 mT 2 h daily, for 7 and 14 days. Afterwards, the cements were removed and the rats were euthanized on days 1, 3, 7, and 14 to evaluate the expression of Wnt5a mRNA and the levels of RANKL, OPG, ALP, and Runx2 on the tension side. The data were analyzed with ANOVA and post hoc tests, with p < 0.05 declared statistically significant. PEMF exposure significantly upregulated Wnt5a mRNA expression, OPG and ALP levels, and Runx2 expression, and decreased RANKL levels in the PEMF 7 and 14 groups compared to the control group (p < 0.05). This study showed that PEMF exposure promotes alveolar bone remodeling during the orthodontic retention phase on the tension side by increasing alveolar bone formation and inhibiting resorption.
RESUMO
This study investigates magnetic flux density (B) and radiofrequency electromagnetic field (RF-EMF) measurements on electric buses operating in Samsun, Turkey, focusing on two bus routes (called E1 and E4) during the morning and evening hours. Measurements were taken under diverse operational conditions, including acceleration, cruising, and braking, at locations of peak passenger density. Along the E1 route, the magnetic field intensity varied significantly based on the bus position, road slope, and passenger load, with notable increases during braking. In contrast, the E4 route showed a lower magnetic field intensity and RF-EMF values due to its straighter trajectory and reduced operational stops. The highest RF-EMF measurement recorded was 6.01 V/m, which is below the maximum levels established by the ICNIRP guidelines. In 11 out of the 12 different band-selective RF-EMF measurements, the highest contribution came from the downlink band of the base stations, while in only one measurement, the highest contribution originated from the uplink bands of the base stations. All data were subject to the Anderson-Darling test, confirming the generalized extreme value distribution as the best fit for both B and RF-EMF measurements. Additionally, the study assessed B levels inside and outside the bus during charging, revealing heightened readings near the pantograph. These findings significantly contribute to our understanding of electromagnetic field exposure in electric bus environments, highlighting potential health implications and informing the development of targeted mitigation strategies.
RESUMO
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Assuntos
Cognição , Campos Eletromagnéticos , Plasticidade Neuronal , Campos Eletromagnéticos/efeitos adversos , Humanos , Animais , Cognição/efeitos da radiação , Cognição/fisiologia , Plasticidade Neuronal/efeitos da radiação , Plasticidade Neuronal/fisiologia , Epigênese Genética , Neurônios/metabolismo , Neurônios/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Rede Nervosa/metabolismo , Rede Nervosa/efeitos da radiação , Memória/efeitos da radiação , Memória/fisiologiaRESUMO
Background: Radio-frequency electromagnetic fields (RF-EMFs) are utilized in communications and appliances and are indispensable in daily life. However, some people have concerns about the adverse health effects of RF-EMFs; therefore, effective risk communication (RC) is needed in this field. Objective: In this study, we investigate public attitudes towards RF-EMFs and examine the impact of RC via a website on these attitudes and objective knowledge. Methods: Three web surveys were conducted over 10 weeks with the same participants. The questionnaires were conducted at three different time points with 5-week intervals: baseline survey (T1), RC evaluation survey (T2), and follow-up survey (T3). Participants of T2 were randomly recruited from among those of T1, and participants of T3 were randomly selected from among the T2 respondents. Approximately half of the respondents in each of T2 and T3 were assigned to the control group. Twelve items regarding attitudes toward RF-EMFs and objective knowledge were evaluated in all surveys (T1-T3). After removing low-engagement data, the number of valid answers was 782 in T3. Differences between T1 and T2 (Sub T1-T2) and T1 and T3 (Sub T1-T3) were analyzed. Participant selection was randomized and the authors were blind to this selection until analysis. Results: Four clusters were identified: Cluster 1 (Non-anxious, 25.0%), Cluster 2 (Anxious, 16.0%), Cluster 3 (Low-interest, 40.5%), and Cluster 4 (High-interest, 18.5%). A decrease in subjective RF-EMF exposure levels was noted in Cluster 2 immediately after website viewing. Temporary increases and decreases in health concerns about RF-EMF usage activities were observed in Clusters 1 and 2, respectively, immediately after viewing. Clusters 1 and 3 showed a temporal decrease in needs for RF-EMF usage activities at T2 but it returned to the baseline level 5 weeks later. Cluster 4 was less responsive to the risk communication. Subanalysis stratified by gender and age showed fluctuations in responses, especially in Clusters 1 and 2. Conclusion: We demonstrate the effectiveness of RF-EMF risk communication via websites, particularly for Cluster 2. The results of this study showed that offering objective and comprehensible information through a website can significantly reduce concerns and perceived risks related to RF-EMFs.
Assuntos
Campos Eletromagnéticos , Internet , Ondas de Rádio , Humanos , Masculino , Feminino , Campos Eletromagnéticos/efeitos adversos , Adulto , Inquéritos e Questionários , Pessoa de Meia-Idade , Comunicação , Conhecimentos, Atitudes e Prática em Saúde , Adulto Jovem , Adolescente , IdosoRESUMO
Purpose: : Polyvinyl alcohol-capped silver nanostructures (cAgNSs) were investigated in order to enhance the cytotoxicity, pro-apoptotic, and oxidant patterns of in human laryngeal carcinoma Hep-2 cells by employing a 50 mT electromagnetic field (LEMF) for 30 min. Methods: Wet chemical reduction was used to synthesize the cAgNSs, and after they had been capped with polyvinyl alcohol, they were specifically examined for particle size analysis and structural morphology. To visualize how the silver may attach to the protein targets, a molecular docking study was conducted. Estimation of cytotoxicity, cell cycle progression supported by mRNA expression of three apoptotic-promoting genes and one apoptotic-resisting. Results: Particle size analysis results were a mean particle size of 157.3±0.5 nm, zeta potential value of -29.6 mV±1.5 mV, and polydispersity index of 0.31±0.05. Significantly reduction of IC50 against Hep-2 cells by around 6-fold was concluded. Also, we obtained suppression of the proliferation of Hep-2 cells, especially in the G0/G1 and S phases. Significant enhanced mRNA expression revealed enhanced induced CASP3, p53, and Beclin-1 mediated pro-apoptosis and induced NF-κB mediated autophagy in Hep-2 cells. Augmented levels of GR, ROS and MDA as oxidative stress biomarkers were also obtained. HE staining of Hep-2 cells exposed to cAgNSs and LEMF confirmed the enhanced apoptotic potential comparatively. Conclusion: By conclusion, the developed nano-sized structures with the aid of extremely-low frequency electromagnetic field were successful to fortify the anti-cancer profile of cAgNSs in Hep-2 cells.
Assuntos
Apoptose , Neoplasias Laríngeas , Nanopartículas Metálicas , Álcool de Polivinil , Prata , Campos Eletromagnéticos , Humanos , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/patologia , Prata/farmacologia , Álcool de Polivinil/farmacologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacosRESUMO
In neurons and myocytes, selective ion channels in the plasma membrane play a pivotal role in transducing chemical or sensory stimuli into electrical signals, underpinning neural and cardiac functionality. Recent advancements in biomedical research have increasingly spotlighted the interaction between ion channels and electromagnetic fields, especially terahertz (THz) radiation. This review synthesizes current findings on the impact of THz radiation, known for its deep penetration and non-ionizing properties, on ion channel kinetics and membrane fluid dynamics. It is organized into three parts: the biophysical effects of THz exposure on cells, the specific modulation of ion channels by THz radiation, and the potential pathophysiological consequences of THz exposure. Understanding the biophysical mechanisms underlying these effects could lead to new therapeutic strategies for diseases.
RESUMO
4-Methylcytosine (4mC) and 6-methyladenine (6mA) are the most prevalent types of DNA modifications in prokaryotes. However, whether there is crosstalk between 4mC and 6mA remain unknown. Here, methylomes and transcriptomes of Geobacter sulfurreducens exposed to different intensities of extremely low frequency electromagnetic fields (ELF-EMF) were investigated. Results showed that the second adenine of all the 5'-GTACAG-3' motif was modified to 6mA (M-6mA). For the other 6mA (O-6mA), the variation in their distance from the neighboring M-6mA increased with the intensity of ELF-EMF. Moreover, cytosine adjacent to O-6mA has a much higher probability of being modified to 4mC than cytosine adjacent to M-6mA, and the closer an unmodified cytosine is to 4mC, the higher the probability that the cytosine will be modified to 4mC. Furthermore, there was no significant correlation between DNA methylation and gene expression regulation. These results suggest a reference signal that goes from M-6mA to O-6mA to 4mC.
RESUMO
The intersection of neuroscience and technology hinges on the development of wearable devices and electrodes that can augment brain networks to improve cognitive capabilities such as learning and concentration. The capacity to enhance networks associated with these functions above baseline capabilities, holds the potential to benefit numerous individuals. The purpose of this study was to determine if electromagnetic field exposure modeled from physiological data would increase instances of flow in participants playing a computer game. The flow state refers to a subjective state of optimal performance experienced by individuals during a variety of tasks. For this study, participants (n = 39, 18-65 years, nfemale = 20) played the arcade game Snake for two ten-minute periods (each with a ten-minute rest period immediately following). For one of the trials, an electromagnetic field was applied bilaterally to the temporal lobes, with the other serving as the control. Brain activity was measured using quantitative electroencephalography, flow experience was measured using the Flow Short Scale and game play scores were also recorded. Results showed deceased beta 1 (12-16 Hz) activity in the left cuneus [t = 4.650, p < 0.01] and left precuneus [t = 4.603, p < 0.01], left posterior cingulate [t = 4.521, p < 0.05], insula [t = 4.234, p < 0.05], and parahippocampal gyrus [t = 4.113, p < 0.05] for trials when the field was active, compared to controls during rest periods. Results from the Flow Short Scale showed a statistically significant difference in mean "concentration ease" scores across electromagnetic field conditions, irrespective of difficulty [t = 2.131, p < 0.05]. In the EMF exposure trials, there was no discernible experience effect; participants with prior experience in the game Snake did not exhibit significantly better performance compared to those without prior experience. This anticipated effect was observed in control conditions. The comparable performance observed between novices and experienced players in the EMF condition indicate a noteworthy learning curve for novices. In all, these results provide evidence supporting the ability of EMF patterned from amygdaloid firing (6-20 Hz) to elicit neurological correlates of flow in brain regions previously reported in the literature, facilitate concentration, and subtly improve game scores. The possibility for wearable devices to support learning, concentration, and focus are discussed.
Assuntos
Eletroencefalografia , Campos Eletromagnéticos , Jogos de Vídeo , Humanos , Adulto , Masculino , Adulto Jovem , Feminino , Eletroencefalografia/métodos , Encéfalo/fisiologia , Pessoa de Meia-Idade , Adolescente , AutorrelatoRESUMO
There is increasing evidence that exposure to weak electromagnetic fields (EMFs) generated by modern telecommunications or household appliances has physiological consequences, including reports of electromagnetic field hypersensitivity (EHS) leading to adverse health effects. Although symptoms can be serious, no underlying mechanism for EHS is known and there is no general cure or effective therapy. Here, we present the case study of a self-reported EHS patient whose symptoms include severe headaches, generalized fatigue, cardiac arrhythmia, attention and memory deficit, and generalized systemic pain within minutes of exposure to telecommunications (Wifi, cellular phones), high tension lines and electronic devices. Tests for cerebral, cardiovascular, and other physiological anomalies proved negative, as did serological tests for inflammation, allergies, infections, auto-immune conditions, and hormonal imbalance. However, further investigation revealed deficits in cellular anti-oxidants and increased radical scavenging enzymes, indicative of systemic oxidative stress. Significantly, there was a large increase in circulating antibodies for oxidized Low-Density Lipoprotein (LDLox), byproducts of oxidative stress accumulating in membranes of vascular cells. Because a known primary effect of EMF exposure is to increase the concentration of cellular oxidants, we propose that pathology in this patient may be causally related to a resulting increase in LDLox synthesis. This in turn could trigger an exaggerated auto-immune response consistent with EHS symptoms. This case report thereby provides a testable mechanistic framework for EHS pathology with therapeutic implications for this debilitating and poorly understood condition.
RESUMO
Introduction: Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods: This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results: Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion: The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
RESUMO
The functional neurons are basic building blocks of the nervous system and are responsible for transmitting information between different parts of the body. However, it is less known about the interaction between the neuron and the field. In this work, we propose a novel functional neuron by introducing a flux-controlled memristor into the FitzHugh-Nagumo neuron model, and the field effect is estimated by the memristor. We investigate the dynamics and energy characteristics of the neuron, and the stochastic resonance is also considered by applying the additive Gaussian noise. The intrinsic energy of the neuron is enlarged after introducing the memristor. Moreover, the energy of the periodic oscillation is larger than that of the adjacent chaotic oscillation with the changing of memristor-related parameters, and same results is obtained by varying stimuli-related parameters. In addition, the energy is proved to be another effective method to estimate stochastic resonance and inverse stochastic resonance. Furthermore, the analog implementation is achieved for the physical realization of the neuron. These results shed lights on the understanding of the firing mechanism for neurons detecting electromagnetic field.
RESUMO
Pulsed electromagnetic field (PEMF) therapy has been extensively investigated in clinical studies for the treatment of angiogenesis-related diseases. However, there is a lack of research on the impact of PEMFs on energy metabolism and mitochondrial dynamics during angiogenesis. The present study included tube formation and CCK-8 assays. A Seahorse assay was conducted to analyze energy metabolism, and mitochondrial membrane potential assays, mitochondrial imaging, and reactive oxygen species assays were used to measure changes in mitochondrial structure and function in human umbilical vein endothelial cells (HUVECs) exposed to PEMFs. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of antioxidants, glycolytic pathway-related genes, and genes associated with mitochondrial fission and fusion. The tube formation assay demonstrated a significantly greater tube network in the PEMF group compared to the control group. The glycolysis and mitochondrial stress tests revealed that PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis. Mitochondrial imaging revealed a wire-like mitochondrial morphology in the control group, and treatment with PEMFs led to shorter and more granular mitochondria. Our major findings indicate that exposure to PEMFs accelerates angiogenesis in HUVECs, likely by inducing energy metabolism reprogramming and mitochondrial fission.