Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 938-950, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959739

RESUMO

Biosynthetic metal sulfides showed great application prospects in the environmental treatment against high-valence metal pollutants. However, the efficiency of biosynthesis, agglomeration during the reaction process, and the formation of the passivation layer during the reduction process were always the important factors restricting its development. This study explored the composition of the culture medium to promote the growth of highly corrosive sulfate-reducing bacteria (SRB) and its metabolism to produce FeS nanoparticles (NPs). The results showed that reducing the carbon source (CS) and adding electron carriers in the culture medium effectively promoted the production of small, dispersed, and loose FeS NPs in cells. At pH = 7, 24 °C and 10 min reaction time, 0.1 g/L FeS NPs produced by SRB under the conditions of 10 % CS with 10 ppm cytochrome c medium could achieve 100 % removal efficiency of 1 mM hexavalent chromium (Cr(VI)). Under this condition, FeS NPs could be produced by intracellular metabolism in SRB cells, and environmental factors such as pH, metal cations, and Cl- had little effect on the removal of Cr(VI) by this FeS NPs. The surface proteins of FeS NPs significantly enhanced their antioxidant properties. After 7 days of natural environment exposure, the Cr(VI) removal efficiency of FeS NPs was only reduced by 16 % compared with the initial sample. This work provided an in-depth understanding of Cr(VI) removal by SRB biosynthesis of FeS and contributes to the widespread application of FeS in the future.


Assuntos
Carbono , Cromo , Cromo/metabolismo , Cromo/química , Carbono/química , Carbono/metabolismo , Desulfovibrio/metabolismo , Compostos Ferrosos/metabolismo , Compostos Ferrosos/química , Elétrons , Propriedades de Superfície , Tamanho da Partícula , Concentração de Íons de Hidrogênio
2.
Adv Sci (Weinh) ; 11(1): e2305749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964411

RESUMO

The inferior capacity and cyclic durability of V2 O5 caused by inadequate active sites and sluggish kinetics are the main problems to encumber the widespread industrial applications of vanadium-zinc batteries (VZBs). Herein, a cooperative redox chemistry (CRC) as "electron carrier" is proposed to facilitate the electron-transfer by capturing/providing electrons for the redox of V2 O5 . The increased oxygen vacancies in V2 O5 provoked in situ by CRC offers numerous Zn2+ storage sites and ion-diffusion paths and reduces the electrostatic interactions between vanadium-based cathode and intercalated Zn2+ , which enhance Zn2+ storage capability and structural stability. The feasibility of this strategy is fully verified by some CRCs. Noticeably, VZB with [Fe(CN)6 ]3- /[Fe(CN)6 ]4- as CRC displays conspicuous specific capacity (433.3 mAh g-1 ), ≈100% coulombic efficiency and superb cyclability (≈3500 cycles without capacity attenuation). Also, the mechanism and selection criteria of CRC are specifically unraveled in this work, which provides insightful perspectives for the development of high-efficiency energy-storage devices.

3.
Mol Plant ; 16(1): 187-205, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36540023

RESUMO

During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Cloroplastos/metabolismo
4.
Chemphyschem ; 23(5): e202100834, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146888

RESUMO

Ubiquinone molecules have a high biological relevance due to their action as electron carriers in the mitochondrial electron transport chain. Here, we studied the dissociative interaction of free electrons with CoQ0 , the smallest ubiquinone derivative with no isoprenyl units, and its fully reduced form, 2,3-dimethoxy-5-methylhydroquinone (CoQ0 H2 ), an ubiquinol derivative. The anionic products produced upon dissociative electron attachment (DEA) were detected by quadrupole mass spectrometry and studied theoretically through quantum chemical and electron scattering calculations. Despite the structural similarity of the two studied molecules, remarkably only a few DEA reactions are present for both compounds, such as abstraction of a neutral hydrogen atom or the release of a negatively charged methyl group. While the loss of a neutral methyl group represents the most abundant reaction observed in DEA to CoQ0 , this pathway is not observed for CoQ0 H2 . Instead, the loss of a neutral OH radical from the CoQ0 H2 temporary negative ion is observed as the most abundant reaction channel. Overall, this study gives insights into electron attachment properties of simple derivatives of more complex molecules found in biochemical pathways.


Assuntos
Elétrons , Hidrogênio , Ânions , Hidrogênio/química , Íons
5.
Sci Total Environ ; 809: 151112, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34688753

RESUMO

The cofactor F420 is synthesized by many different organisms and as a redox cofactor, it plays a crucial role in the redox reactions of catabolic and biosynthetic metabolic pathways. It consists of a deazaflavin structure, which is linked via lactate to an oligoglutamate chain, that can vary in length. In the present study, the methanogenic Archaea Methanosarcina thermophila and Methanoculleus thermophilus were cultivated on different carbon sources and their coenzyme F420 composition has been assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorometric detection regarding both, overall cofactor F420 production and distribution of F420 glutamyl tail length. In Methanosarcina thermophila cultivated on methanol, acetate, and a mixture of acetate and methanol, the most abundant cofactors were F420-5 and F420-4, whereby the last digit refers to the number of expressed glutamyl rests. By contrast, in the obligate CO2 reducing Methanoculleus thermophilus the most abundant cofactors were F420-3 and F420-4. In Methanosarcina thermophila, the relative proportions of the expressed F420 tail length changed during batch growth on all three carbon sources. Over time F420-3 and F420-4 decreased while F420-5 and F420-6 increased in their relative proportion in comparison to total F420 content. In contrast, in Methanoculleus thermophilus the relative abundance of the different F420 cofactors remained stable. It was also possible to differentiate the two methanogenic Archaea based on the glutamyl tail length of the cofactor F420. The cofactor F420-5 in concentrations >2% could only be assigned to Methanosarcina thermophila. In all four variants a trend for a positive correlation between the DNA concentration and the total concentration of the cofactor could be shown. Except for the variant Methanosarcinathermophila with acetate as sole carbon source the same could be shown between the concentration of the mcrA gene copy number and the total concentration of the cofactor.


Assuntos
Methanomicrobiaceae , Methanosarcina/enzimologia , Metano , Methanomicrobiaceae/enzimologia , Riboflavina/análogos & derivados
6.
Methods Mol Biol ; 2280: 179-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751435

RESUMO

To perform their action, flavoproteins usually interact with a variety of low molecular weight partners, including electron transporters, yielding transient complexes whose tightness is often controlled by the redox state of the bound flavin cofactor. As a case study, here we describe the quantitative analysis of the redox-dependent interaction of the mammalian apoptosis inducing factor (AIF) with its NAD+ ligand. In particular, we report a protocol for the spectrophotometric titration of AIF in its reduced state under anaerobic conditions with NAD+, in order to determine the dissociation constant of the resulting complex.


Assuntos
Fator de Indução de Apoptose/metabolismo , Escherichia coli/crescimento & desenvolvimento , NAD/metabolismo , Regulação Alostérica , Anaerobiose , Animais , Fator de Indução de Apoptose/genética , Escherichia coli/genética , Camundongos , Proteínas Recombinantes/metabolismo , Espectrofotometria
7.
Bioresour Technol ; 320(Pt A): 124294, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33129089

RESUMO

Transition metal compounds have been widely used to enhance the anaerobic digestion (AD) performance, while the role of transition metal compounds in enhancing AD performance remains unclarified. In this work, the function of transition metal oxide accelerants (tantalum oxide, niobium oxide, hafnium oxide, and tungsten oxide) in enhanced AD systems was investigated from experimental and theoretical standpoints. Higher biogas production (565.01-617.85 mL/g VS), chemical oxygen demand degradation rate (67.17%-70.45%), total solids and volatile solids reduction rates (29.76%-34.71%, 51.83%-60.88%) were achieved in AD systems with transition metal oxide accelerants than the control (327.08 mL/g VS, 56.65%, 22.65%, and 41.18%). The first-principle density functional theory calculations, electron exchange capacity analysis, and the 16S rRNA gene pyrosequencing demonstrated superior electron transfer and exchange capacities as well as microbial consortia development in transition metal oxides-induced DIET mechanism. This work provides a promising strategy for understanding the function of high-performance accelerants in AD systems.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Elétrons , Óxidos , RNA Ribossômico 16S
8.
Biotechnol Bioeng ; 118(2): 770-783, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058166

RESUMO

Clostridium tyrobutyricum produces butyric and acetic acids from glucose. The butyric acid yield and selectivity in the fermentation depend on NADH available for acetate reassimilation to butyric acid. In this study, benzyl viologen (BV), an artificial electron carrier that inhibits hydrogen production, was used to increase NADH availability and butyric acid production while eliminating acetic acid accumulation by facilitating its reassimilation. To better understand the mechanism of and find the optimum condition for BV effect on enhancing acetate assimilation and butyric acid production, BV at various concentrations and addition times during the fermentation were studied. Compared with the control without BV, the addition of 1 µM BV increased butyric acid production from glucose by ∼50% in yield and ∼29% in productivity while acetate production was completely inhibited. Furthermore, BV also increased the coutilization of glucose and exogenous acetate for butyric acid production. At a concentration ratio of acetate (g/L) to BV (mM) of 4, both acetate assimilation and butyrate biosynthesis increased with increasing the concentrations of BV (0-6.25 µM) and exogenous acetate (0-25 g/L). In a fed-batch fermentation with glucose and ∼15 g/L acetate and 3.75 µM BV, butyrate production reached 55.9 g/L with productivity 0.93 g/L/h, yield 0.48 g/g, and 97.4% purity, which would facilitate product purification and reduce production cost. Manipulating metabolic flux and redox balance via BV and acetate addition provided a simple to implement metabolic process engineering approach for butyric acid production from sugars and biomass hydrolysates.


Assuntos
Acetatos/metabolismo , Benzil Viologênio/farmacologia , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/metabolismo , NAD/biossíntese
9.
J Microbiol Biotechnol ; 27(3): 500-506, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28035120

RESUMO

To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum-synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis, Lactobacillus rhamosus, and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at 4°C with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Aditivos Alimentares , Heme/química , Heme/metabolismo , Ração Animal , Animais , Proteínas de Bactérias/isolamento & purificação , Proteínas de Transporte/metabolismo , Corynebacterium glutamicum/genética , Elétrons , Aditivos Alimentares/química , Aditivos Alimentares/isolamento & purificação , Aditivos Alimentares/metabolismo , Heme/isolamento & purificação , Ferro/metabolismo , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Suínos
10.
Biotechnol Bioeng ; 113(7): 1522-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26724425

RESUMO

Directed evolution of a cyanobacterial Δ9 fatty acid desaturase (DSG) from Synechococcus elongatus, PCC6301 created new, more productive desaturases and revealed the importance of certain amino acid residues to increased desaturation. A codon-optimized DSG open reading frame with an endoplasmic-reticulum retention/retrieval signal appended was used as template for random mutagenesis. Increased desaturation was detected using a novel screen based on complementation of the unsaturated fatty acid auxotrophy of Saccharomyces cerevisiae mutant ole1Δ. Amino acid residues whose importance was discovered by the random processes were further examined by saturation mutation to determine the best amino acid at each identified location in the peptide chain and by combinatorial analysis. One frequently-detected single amino acid change, Q240R, yielded a nearly 25-fold increase in total desaturation in S. cerevisiae. Several other variants of the protein sequence with multiple amino acid changes increased total desaturation more than 60-fold. Many changes leading to increased desaturation were in the vicinity of the canonical histidine-rich regions known to be critical for electron transfer mediated by these di-iron proteins. Expression of these evolved proteins in the seed of Arabidopsis thaliana altered the fatty acid composition, increasing monounsaturated fatty acids and decreasing the level of saturated fatty acid, suggesting a potential application of these desaturases in oilseed crops. Biotechnol. Bioeng. 2016;113: 1522-1530. © 2016 Wiley Periodicals, Inc.


Assuntos
Cianobactérias/enzimologia , Evolução Molecular Direcionada/métodos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Óleos de Plantas/análise , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética
11.
Biotechnol Bioeng ; 112(4): 705-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25363722

RESUMO

Butanol biosynthesis through aldehyde/alcohol dehydrogenase (adhE2) is usually limited by NADH availability, resulting in low butanol titer, yield, and productivity. To alleviate this limitation and improve n-butanol production by Clostridium tyrobutyricum Δack-adhE2 overexpressing adhE2, the NADH availability was increased by using methyl viologen (MV) as an artificial electron carrier to divert electrons from ferredoxin normally used for H2 production. In the batch fermentation with the addition of 500 µM MV, H2 , acetate, and butyrate production was reduced by more than 80-90%, while butanol production increased more than 40% to 14.5 g/L. Metabolic flux analysis revealed that butanol production increased in the fermentation with MV because of increased NADH availability as a result of reduced H2 production. Furthermore, continuous butanol production of ∼55 g/L with a high yield of ∼0.33 g/g glucose and extremely low ethanol, acetate, and butyrate production was obtained in fed-batch fermentation with gas stripping for in situ butanol recovery. This study demonstrated a stable and reliable process for high-yield and high-titer n-butanol production by metabolically engineered C. tyrobutyricum by applying MV as an electron carrier to increase butanol biosynthesis.


Assuntos
1-Butanol/metabolismo , Clostridium tyrobutyricum/enzimologia , Clostridium tyrobutyricum/metabolismo , Glucose/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Oxirredutases/metabolismo , Acetatos/metabolismo , Biotecnologia/métodos , Butiratos/metabolismo , Clostridium tyrobutyricum/genética , Fermentação , Expressão Gênica , Hidrogênio/metabolismo , Análise do Fluxo Metabólico , NAD/metabolismo , Oxirredutases/genética , Paraquat/metabolismo
12.
Cell Biol Educ ; 3(1): 62-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-22039346

RESUMO

We designed an interrupted case study to teach aerobic cellular respiration to major and nonmajor biology students. The case is based loosely on a real-life incident of rotenone poisoning. It places students in the role of a coroner who must determine the cause of death of the victim. The case is presented to the students in four parts. Each part is followed by discussion questions that the students answer in small groups prior to a classwide discussion. Successive parts of the case provide additional clues to the mystery and help the students focus on the physiological processes involved in aerobic respiration. Students learn the information required to solve the mystery by reading the course textbook prior to class, listening to short lectures interspersed throughout the case, and discussing the case in small groups. The case ends with small group discussions in which the students are given the names and specific molecular targets of other poisons of aerobic respiration and asked to determine which process (i.e., glycolysis, citric acid cycle, or the electron transport chain) the toxin disrupts.


Assuntos
Biologia/educação , Educação/métodos , Inseticidas/toxicidade , Sifonápteros/efeitos dos fármacos , Aerobiose/efeitos dos fármacos , Animais , Respiração Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Avaliação de Programas e Projetos de Saúde , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA