Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt C): 113361, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35526582

RESUMO

Solid fuel is the most widely used energy source for cooking and heating in the rural households in developing countries. In this study, emissions from 13 fuel-stove combinations were studied in two typical rural villages in the Fenhe Basin, Shanxi Province, China. This study gathered data on the emission characteristics of particles with an aerodynamic diameter of ≤2.5 µm (PM2.5), organic carbon (OC), elemental carbon (EC), and 21 parent and oxygenated polycyclic aromatic hydrocarbons (pPAHs and oPAHs, respectively); the mechanism of gas formation was also determined. The PM2.5 EFs of biomass burning ranged from 4.11 ± 2.12 to 138 ± 47.2 g/kg, which was higher than that of coal combustion (1.57 ± 0.89 to 4.11 ± 0.63 g/kg). Notably, the average PM2.5 EFs of biomass burning in a traditional stove and elevated kang were 50.9 ± 13.8 and 23.0 ± 3.99 g/kg, respectively, suggesting that the elevated kang had superior emission mitigation. Wood pellet burning in a biomass furnace yielded lower PM2.5 EFs than firewood burning in the biomass furnace, which demonstrated wood pellet combustion's superior emission reduction effect. The relative contribution of OC4 to OC subfractions may be useable as tools for identifying the sources of coal and biomass burning. Regarding PAHs, biomass with abundant lignin pyrolysis produced numerous hydroxyl radicals that were conducive to the release of greater proportions of oPAHs. By contrast, pPAHs had greater relative contributions in coal combustion. Regarding gaseous pollutants, its formation mechanism varied with combustion phase. Emission differences between the two phases were mainly determined by the relative contributions of volatile C/N and char. Clarifying the pollutant formation mechanism can better guide the implementation of emission control from household solid fuel combustion.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Carbono/análise , China , Carvão Mineral/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA