RESUMO
Introduction: Nuclear envelopathies occur due to structural and/or functional defects in various nuclear envelope proteins such as lamin A/C and lamin related proteins. This study is the first report on the phenotype-genotype patterns of nuclear envelopathy-related muscular dystrophies from India. Methods: In this retrospective study, we have described patients with genetically confirmed muscular dystrophy associated with nuclear envelopathy. Data on clinical, laboratory findings and muscle MRI were collected. Results: Sixteen patients were included with median age at onset of 3 years (range: 1 month - 17 years). Three genes were involved: LMNA (11, 68.75%), EMD (4, 25%) and SYNE1 (1, 6.25%). The 11 patients with LMNA variants were Congenital muscular dystrophy (MDCL)=4, Limb Girdle Muscular Dystrophy (LGMD1B)=4 and Emery-Dreifuss Muscular Dystrophy (EDMD2)=3. On muscle biopsy, one patient from each laminopathy phenotype (nâ=â3) revealed focal perivascular inflammatory infiltrate. Other notable features were ophthalmoparesis in one and facial weakness in one. None had cardiac involvement. Patients with EDMD1 had both upper (UL) and lower limb (LL) proximo-distal weakness. Cardiac rhythm disturbances such as sick sinus syndrome and atrial arrhythmias were noted in two patients with EDMD1. Only one patient with variant c.654_658dup (EMD) lost ambulation in the 3rd decade, 18 years after disease onset. Two had finger contractures with EMD and SYNE1 variants respectively. All patients with LMNA and SYNE1 variants were ambulant at the time of evaluation. Mean duration of illness (years) was 11.6±13 (MDCL), 3.2±1.0 (EDMD2), 10.4±12.8 (LGMD1B), 11.8±8.4 (EDMD1) and 3 (EDMD4). One patient had a novel SYNE1 mutation (c.22472dupA, exon 123) and presented with UL phenotype and prominent finger and wrist contractures. Conclusion: The salient features included ophthalmoparesis and facial weakness in LMNA, prominent finger contractures in EMD and SYNE1 and upper limb phenotype with the novel pathogenic variant in SYNE1.
Assuntos
Lamina Tipo A , Humanos , Adolescente , Masculino , Criança , Feminino , Estudos Retrospectivos , Pré-Escolar , Índia , Lactente , Lamina Tipo A/genética , Heterogeneidade Genética , Fenótipo , Distrofias Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Proteínas Nucleares/genética , Músculo Esquelético/patologia , Músculo Esquelético/diagnóstico por imagem , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas do CitoesqueletoRESUMO
Emery-Dreifuss muscular dystrophy (EDMD) is a rare, inherited human disease. Similar to other neuromuscular dystrophies, EDMD is clinically characterized by muscle atrophy and weakness, multi-joint contractures with spine rigidity, and cardiomyopathy. Over time, muscular weakness can lead to dysphagia and a severe lowering of body mass index (BMI), worsening the prognosis. We present the case of a young male patient affected by EDMD, admitted to the hospital for pneumothorax in a severe state of undernourishment. The patient was treated with total parenteral nutrition (TPN) with Smofkabiven®, supplemented with micronutrients (vitamins and trace elements), and with minimal enteral nutrition through food. Within a year, the patient gained 8.5 kg and kept his body weight stable for the 6 years of the follow-up. In this study, we show that TPN ensures the nutritional requirements of EDMD patients in a safe and well-tolerated manner, allowing a considerable and stable improvement in nutritional status, which has a positive impact on the disease itself and the patients' quality of life.
RESUMO
The presence of nuclear architectural abnormalities is a hallmark of the nuclear envelopathies, which are a group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations in the lamin A/C gene cause several diseases, named laminopathies, including muscular dystrophies, progeria syndromes, and lipodystrophy. A mouse model carrying with the LmnaH222P/H222P mutation (H222P) was shown to develop severe cardiomyopathy but only mild skeletal myopathy, although abnormal nuclei were observed in their striated muscle. In this report, we analyzed the abnormal-shaped nuclei in myoblasts and myotubes isolated from skeletal muscle of H222P mice, and evaluated the expression of nuclear envelope proteins in these abnormal myonuclei. Primary skeletal muscle cells from H222P mice proliferated and efficiently differentiated into myotubes in vitro, similarly to those from wild-type mice. During cell proliferation, few abnormal-shaped nuclei were detected; however, numerous markedly abnormal myonuclei were observed in myotubes from H222P mice on days 5 and 7 of differentiation. Time-lapse observation demonstrated that myonuclei with a normal shape maintained their normal shape, whereas abnormal-shaped myonuclei remained abnormal for at least 48 h during differentiation. Among the abnormal-shaped myonuclei, 65% had a bleb with a string structure, and 35% were severely deformed. The area and nuclear contents of the nuclear blebs were relatively stable, whereas the myocytes with nuclear blebs were actively fused within primary myotubes. Although myonuclei were markedly deformed, the deposition of DNA damage marker (γH2AX) or apoptotic marker staining was rarely observed. Localizations of lamin A/C and emerin were maintained within the blebs, strings, and severely deformed regions of myonuclei; however, lamin B1, nesprin-1, and a nuclear pore complex protein were absent in these abnormal regions. These results demonstrate that nuclear membranes from H222P skeletal muscle cells do not rupture and are resistant to DNA damage, despite these marked morphological changes.
Assuntos
Diferenciação Celular , Núcleo Celular , Lamina Tipo A , Fibras Musculares Esqueléticas , Animais , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Núcleo Celular/metabolismo , Camundongos , Proliferação de Células , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mioblastos/metabolismo , Mioblastos/patologia , Mioblastos/citologia , Músculo Esquelético/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismoRESUMO
In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.
Assuntos
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismoRESUMO
Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in genes encoding nuclear envelope proteins, is clinically characterized by muscular dystrophy, early joint contracture, and life-threatening cardiac abnormalities. To elucidate the pathophysiological mechanisms underlying striated muscle involvement in EDMD, we previously established a murine model with mutations in Emd and Lmna (Emd-/-/LmnaH222P/H222P; EH), and reported exacerbated skeletal muscle phenotypes and no notable cardiac phenotypes at 12 weeks of age. We predicted that lack of emerin in LmnaH222P/H222P mice causes an earlier onset and more pronounced cardiac dysfunction at later stages. In this study, cardiac abnormalities of EDMD mice were compared at 18 and 30 weeks of age. Contrary to our expectations, physiological and histological analyses indicated that emerin deficiency causes no prominent differences of cardiac involvement in LmnaH222P/H222P mice. These results suggest that emerin does not contribute to cardiomyopathy progression in LmnaH222P/H222P mice.
Assuntos
Cardiomiopatias , Distrofia Muscular de Emery-Dreifuss , Camundongos , Animais , Modelos Animais de Doenças , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia , Cardiomiopatias/genética , MutaçãoRESUMO
Clinical frailty affects â¼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
RESUMO
Emery-Dreifuss muscular dystrophy is associated with cardiac abnormalities and rarely heart transplantation may be the treatment of choice. In this case, a male patient with Emery- Dreifuss muscular dystrophy developed NYHA class IV heart failure at 33 years of age and was submitted to heart transplantation. Anesthesia was adapted to prevent the development of malignant hyperthermia and rhabdomyolysis. The surgery was a success and the patient's progress was extremely positive with symptomatic improvement. In these patients, is critical to adjust not only his positioning but also the therapy administered in order to reduce iatrogeny and promote a faster recovery.
Assuntos
Anestesia , Anestésicos , Transplante de Coração , Distrofias Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Masculino , Distrofias Musculares/complicações , Distrofia Muscular de Emery-Dreifuss/complicações , Distrofia Muscular de Emery-Dreifuss/terapiaRESUMO
BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3-109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2-60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.
Assuntos
Cardiopatias , Insuficiência Cardíaca , Distrofia Muscular de Emery-Dreifuss , Distrofia Muscular de Emery-Dreifuss Ligada ao Cromossomo X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Distrofia Muscular de Emery-Dreifuss Ligada ao Cromossomo X/complicações , Estudos Retrospectivos , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/complicações , Cardiopatias/complicações , Distrofia Muscular de Emery-Dreifuss/complicações , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/complicações , MutaçãoRESUMO
Testicular germ cell tumor (GCT) is a rare disease, accounting for no more than 1.5% of all neoplasms in males, but represents the most common tumors in adolescents and young men in Western countries. There is also consensus about the involvement of genetic factors in the etiology of testicular GCT. Familial occurrence of testicular GCT is observed in 1-2% of all cases with GCT. We report the unique case of two brothers, both afflicted with inherited Emery-Dreifuss muscular dystrophy (EDMD) and both developing testicular GCT in young adulthood. EDMD is a rare muscular dystrophy, characterized by the triad of joint contractures, slowly progressive muscle weakness, and cardiac involvement. EDMD is not a homogeneous clinical entity because it is associated with various gene mutations. One common mutation relates to the Four and a half Limb domain protein 1 (FHL-1) gene. To date, there have been no GCT cases linked with FHL-1 mutations and no malignant disease has been found associated with EDMD.
RESUMO
Laminopathy is muscular dystrophy caused by an LMNA gene mutation. It is characterized by cardiac disease such as atrial fibrillation. We report a case of laminopathy in a 49-year-old woman who presented with cardiogenic stroke. She had experienced weakness in her limb-girdle muscles since childhood, atrial fibrillation, cardiomyopathy, and mild contracture of the ankle joints, and had a familial history of heart disease. Gene analysis identified a novel heterozygous variant, c. 1135C>A (p.Leu379Ile), in the LMNA gene. Laminopathy can be an underlying disease in ischemic stroke, especially in young to middle age.
RESUMO
Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.
Assuntos
Lamina Tipo A , Distrofias Musculares , Animais , Adulto , Humanos , Lamina Tipo A/metabolismo , Drosophila/genética , Drosophila/metabolismo , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Mutação/genética , Distrofias Musculares/genéticaRESUMO
Abstract Emery-Dreifuss Muscular Dystrophy is a very rare type of muscular dystrophy, associated with contractures, atrophy, and muscle weakness, besides cardiomyopathy with severe arrhythmias. Published studies focusing on this disorder are scarce. We describe the anesthetic management of a male patient with Emery-Dreifuss Muscular Dystrophy, to be submitted to umbilical and inguinal hernioplasty and hydrocele repair under epidural anesthesia. The anesthesia approach enabled us to circumvent the patient's susceptibility to malignant hyperthermia and his potentially difficult airway, in addition to maintaining hemodynamic stability. The day after surgery the patient resumed walking, and two days later he was discharged from the hospital.
Assuntos
Humanos , Masculino , Distrofia Muscular de Emery-Dreifuss/complicações , Distrofia Muscular de Emery-Dreifuss/patologia , Anestesia Epidural , Anestésicos , Hipertermia MalignaRESUMO
BACKGROUND: Emery-Dreifuss muscular dystrophy (EDMD2) is a rare form of muscular dystrophy that is inherited as an autosomal dominant trait. In some patients, it is inherited from parental mosaicism, and this increases the recurrence risk significantly. The presence of mosaicism is underestimated due to the limitations of genetic testing and the difficulty in obtaining samples. METHODS: A peripheral blood sample from a 9-year-old girl with EDMD2 was analyzed by enhanced whole exome sequencing (WES). Sanger sequencing in her unaffected parents and younger sister was performed for validation. In the mother, ultra-deep sequencing and droplet digital PCR (ddPCR) in multiple samples (blood, urine, saliva, oral epithelium, and nail clippings) were performed in order to identify the suspected mosaicism of the variant. RESULTS: WES revealed a heterozygous mutation (LMNA, c.1622G>A) in the proband. Sanger sequencing of the mother suggested the presence of mosaicism. The ratio of mosaic mutation was confirmed in different samples by ultra-deep sequencing and ddPCR (19.98%-28.61% and 17.94%-28.33%, respectively). This inferred that the mosaic mutation may have occurred early during embryonic development and that the mother had gonosomal mosaicism. CONCLUSION: We described a case of EDMD2 caused by maternal gonosomal mosaicism which was confirmed by using ultra-deep sequencing and ddPCR. This study illustrates the importance of a systematic and comprehensive screening of parental mosaicism with more sensitive approaches and the use of multiple tissue samples.
Assuntos
Mosaicismo , Distrofia Muscular de Emery-Dreifuss , Humanos , Feminino , Criança , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Muscular dystrophies vary in presentation and severity, but are associated with profound disability in many people. Although characterised by muscle weakness and wasting, there is also a very high prevalence of sleep problems and disorders which have significant impacts on quality of life in these individuals. There are no curative therapies for muscular dystrophies, with the only options for patients being supportive therapies to aid with symptoms. Therefore, there is an urgent need for new therapeutic targets and a greater understanding of pathogenesis. Inflammation and altered immunity are factors which have prominent roles in some muscular dystrophies and emerging roles in others such as type 1 myotonic dystrophy, signifying a link to pathogenesis. Interestingly, there is also a strong link between inflammation/immunity and sleep. In this review, we will explore this link in the context of muscular dystrophies and how it may influence potential therapeutic targets and interventions.
Assuntos
Distrofias Musculares , Qualidade de Vida , Humanos , Distrofias Musculares/complicações , Distrofias Musculares/diagnóstico , Distrofias Musculares/patologia , SonoRESUMO
Background: Heart disease is an under-recognized cause of morbidity and mortality in patients with Emery-Dreifuss muscular dystrophy (EDMD). Arrhythmias and conduction delays are highly prevalent and given the rarity of this disease the patient care process remains poorly defined. Case summary: This study closely followed four adult patients from the Neuromuscular Multidisciplinary Clinic (Alberta, Canada) that presented with X-linked recessive EDMD. Patients were assessed and managed on a case-by-case basis. Clinical status and cardiac function were assessed through clinical history, physical examination, and investigations (12-lead electrocardiogram, 24â hour Holter monitor, transthoracic echocardiogram, and plasma biomarkers). Conduction disease, requiring permanent pacemaker, was prevalent in all patients. With appropriate medical therapy over a median follow-up period five years the cardiac status was shown to have stabilized in all these patients. Discussion: We demonstrate the presentation of arrhythmias, conduction abnormalities, and chamber dilation in adult patients with X-linked EDMD. Cardiac medications and pacemaker therapy are shown to prevent adverse outcomes from these complications. Patients with EDMD are expected to develop heart disease early and prior to the development of an overt neuromuscular phenotype. These patients should be closely monitored in a multidisciplinary setting for effective management to improve their clinical outcomes.
RESUMO
Emery-Dreifuss Muscular Dystrophy is a very rare type of muscular dystrophy, associated with contractures, atrophy, and muscle weakness, besides cardiomyopathy with severe arrhythmias. Published studies focusing on this disorder are scarce. We describe the anesthetic management of a male patient with Emery-Dreifuss Muscular Dystrophy, to be submitted to umbilical and inguinal hernioplasty and hydrocele repair under epidural anesthesia. The anesthesia approach enabled us to circumvent the patient...s susceptibility to malignant hyperthermia and his potentially difficult airway, in addition to maintaining hemodynamic stability. The day after surgery the patient resumed walking, and two days later he was discharged from the hospital.
Assuntos
Anestesia Epidural , Anestésicos , Hipertermia Maligna , Distrofia Muscular de Emery-Dreifuss , Humanos , Masculino , Distrofia Muscular de Emery-Dreifuss/complicações , Distrofia Muscular de Emery-Dreifuss/patologiaRESUMO
Resumo A distrofia muscular de Emery-Dreifuss é uma doença neuromuscular hereditária rara. Suas manifestações começam principalmente na infância. As manifestações mais frequentes são fraqueza muscular progressiva, atrofia que geralmente se inicia na região escápulo-vertebral, estendendo-se posteriormente para a cintura pélvica e rigidez da coluna vertebral. Os pacientes também podem manifestar envolvimento cardíaco como palpitações, síncope, intolerância ao exercício, insuficiência cardíaca congestiva e distúrbios variáveis do ritmo cardíaco. 1 - 3 A presença e a gravidade dessas manifestações podem variar de acordo com o indivíduo e os subtipos da doença. 2 O envolvimento cardíaco é a característica mais preocupante desta doença, havendo alguns relatos da necessidade de transplante cardíaco nesta distrofia. 4
Abstract Emery-Dreifuss muscular dystrophy is a rare hereditary neuromuscular disease. Its manifestations begin primarily in childhood. The most frequent manifestations are progressive muscle weakness, atrophy that usually begins in the scapula-vertebral region, extending later to the pelvic girdle, and spinal stiffness. Patients can also manifest cardiac involvement as palpitations, syncope, exercise intolerance, congestive heart failure, and variable heart rhythm disturbances.1 - 3 The presence and severity of these manifestations can vary according to the individual and the disease's subtypes. 2 Cardiac involvement is the most worrisome feature of this disease, and there are some reports of the need for heart transplantation in this dystrophy. 4
RESUMO
Herein, we describe an autopsy case of the sudden unexpected death of a 23-year-old man. Retrospective analysis of electrocardiograms revealed progressive widening of the QRS interval. Autopsy showed mild mitral valve prolapse and hypertrabeculation of the left ventricle. Microscopic examination revealed very scarce but considerable minimal myocardial necrotic foci in the left ventricle, and a marked reduction in conduction fibers in the left branch. These findings may be associated with intraventricular conduction delay. Genetic investigation revealed four rare possibly pathogenic variants, including the Emery-Dreifuss muscular dystrophy-associated genetic variant SYNE2_p.A6155 V that is evaluated as pathogenic by most in silico predictive tools. The other possibly pathogenic variants detected were PLEC_p.P973L, TTN_p.I22171T, and p.A12216T. Although these variants are reported to have uncertain significance in the guidelines of the American College of Medical Genetics and Genomics, progressive conduction delay may have been associated with vulnerability of myocytes due to Emery-Dreifuss muscular dystrophy-associated genetic variants in the present case. Younger individuals with progressive conduction delay may require medical work-up and genetic investigation, even if they have no other clinical signs and no or mild structural heart disease.
Assuntos
Morte Súbita , Distrofia Muscular de Emery-Dreifuss , Masculino , Adulto Jovem , Humanos , Adulto , Autopsia , Estudos Retrospectivos , EletrocardiografiaRESUMO
X-Linked Emery-Dreifuss muscular dystrophy is caused by mutations in the gene encoding emerin. Emerin is an inner nuclear membrane protein important for repressive chromatin organization at the nuclear periphery. Myogenic differentiation is a tightly regulated process characterized by genomic reorganization leading to coordinated temporal expression of key transcription factors, including MyoD, Pax7, and Myf5. Emerin was shown to interact with repressive histone modification machinery, including HDAC3 and EZH2. Using emerin-null myogenic progenitor cells we established several EDMD-causing emerin mutant lines in the effort to understand how the functional interaction of emerin with HDAC3 regulates histone methyltransferase localization or function to organize repressive chromatin at the nuclear periphery. We found that, in addition to its interaction with HDAC3, emerin interacts with the histone methyltransferases EZH2 and G9a in myogenic progenitor cells. Further, we show enhanced binding of emerin HDAC3-binding mutants S54F and Q133H to EZH2 and G9a. Treatment with small molecule inhibitors of EZH2 and G9a reduced H3K9me2 or H3K27me3 throughout differentiation. EZH2 and G9a inhibitors impaired cell cycle withdrawal, differentiation commitment, and myotube formation in wildtype progenitors, while they had no effect on emerin-null progenitors. Interestingly, these inhibitors exacerbated the impaired differentiation of emerin S54F and Q133H mutant progenitors. Collectively, these results suggest the functional interaction between emerin and HDAC3, EZH2, and G9a are important for myogenic differentiation.
RESUMO
BACKGROUND: Emery-Dreifuss muscular dystrophy (EDMD) is an uncommon, gradually progressive X-linked myopathy, and it could result in rigid spinal deformity. Only a few case reports have described surgical treatment of cervical hyperlordosis and thoracolumbar kyphoscoliosis secondary to EDMD. We report a rare case of EDMD to present the surgical strategies of severe cervical hyperlordosis and thoracolumbar kyphoscoliosis. CASE PRESENTATION: The patient was a 22-year-old man with EDMD who had severe cervical hyperlordosis and thoracolumbar kyphoscoliosis. A posterior spinal fusion from T9-S2 was performed to correct the thoracolumbar kyphoscoliosis at the age of 21 years. Six months later, with an anterior C7-T1 closing wedge bone-disc-bone osteotomy and a posterior-anterior-posterior cervicothoracic fusion from C4-T4, the cervical deformity was corrected, thus achieving a horizontal gaze. During 1.5-year follow-up, no loss of correction was observed. CONCLUSION: Cervical posterior-anterior-posterior closing-wedge osteotomy combined with long fusion at thoracolumbar spine can be a reliable surgical technique to correct severe spine deformity in EDMD. This two-stage revision surgical strategy can help restore a horizontal gaze on the basis of a balanced trunk. Cervical deformity in such patients should be corrected in the first stage considering its role as a "driver" of the global spine deformity.