Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 924262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062152

RESUMO

Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.

2.
J Neurosurg Spine ; 29(2): 199-207, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29775163

RESUMO

OBJECTIVE The aim of this work was to investigate the effects of methylprednisolone on the proliferation of endogenous neural stem cells (ENSCs) in nonhuman primates with spinal cord injury (SCI). METHODS A total of 14 healthy cynomolgus monkeys ( Macaca fascicularis) (4-5 years of age) were randomly divided into 3 groups: the control group (n = 6), SCI group (n = 6), and methylprednisolone therapy group (n = 2). Only laminectomy was performed in the control animals at T-10. SCI was induced in monkeys using Allen's weight-drop method (50 mm × 50 g) to injure the posterior portion of the spinal cord at T-10. In the methylprednisolone therapy group, monkeys were intravenously infused with methylprednisolone (30 mg/kg) immediately after SCI. All animals were intravenously infused with 5-bromo-2-deoxyuridine (BrdU) (50 mg/kg/day) for 3 days prior to study end point. The small intestine was dissected for immunohistochemical examination. After 3, 7, and 14 days, the spinal cord segments of the control and SCI groups were dissected to prepare frozen and paraffin sections. The proliferation of ENSCs was evaluated using BrdU and nestin immunofluorescence staining. RESULTS Histological examination showed that a larger number of mucosa epithelial cells in the small intestine of all groups were BrdU positive. Nestin-positive ependymal cells are increased around the central canal after SCI. After 3, 7, and 14 days of SCI, BrdU-positive ependymal cells in the SCI group were significantly increased compared with the control group, and the percentage of BrdU-positive cells in the left/right ventral horns and dorsal horn was significantly higher than that of the control group. Seven days after SCI, the percentages of both BrdU-positive ependymal cells around the central canal and BrdU- and nestin-double positive cells in the left/right ventral horns and dorsal horn were significantly lower in the methylprednisolone therapy group than in the SCI group. CONCLUSIONS While ENSCs proliferate significantly after SCI in nonhuman primates, methylprednisolone can inhibit the proliferation of ependymal cells after SCI.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Metilprednisolona/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Epêndima/efeitos dos fármacos , Epêndima/patologia , Epêndima/fisiopatologia , Feminino , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Macaca fascicularis , Masculino , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Distribuição Aleatória , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas
3.
Int J Biochem Cell Biol ; 89: 110-119, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28579528

RESUMO

Endogenous neural stem cells (NSCs) are the most promising sources for replacing cells lost after spinal cord injury (SCI). We have previously shown that substance P (SP), a neuropeptide, improves functional recovery after SCI and increases the numbers of cells in lesion sites, but how this occurs is unclear. Here, we investigate whether SP regulates the neurogenesis of resident NSCs as well as exerting a beneficial effect on functional improvement. We found that SP (5nmol/kg) treatment markedly improved functional recovery and elicited robust activation of endogenous NSCs and boosted the number of EdU+ proliferating cells differentiating into neurons, but it reduced astroglial differentiation in the lesion sites. Consistently, treatment with SP (10nM) in vitro significantly increased the proliferation of NSCs via activating the Erk1/2 signaling pathway and promoted neuronal differentiation but not astroglial differentiation. These results suggest that SP may represent a potential therapeutic agent for SCI via enhancing endogenous neurogenesis.


Assuntos
Neurogênese/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Substância P/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia
4.
Biomaterials ; 137: 73-86, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28544974

RESUMO

Studies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI. These injury-activated NSCs then migrated into the lesion site. Cetuximab, an EGFR signaling antagonist, significantly increased neurogenesis in the lesion site. Meanwhile, implanting cetuximab modified linear ordered collagen scaffolds (LOCS) into SCI lesion sites in dogs resulted in neuronal regeneration, including neuronal differentiation, maturation, myelination, and synapse formation. The neuronal regeneration eventually led to a significant locomotion recovery. Furthermore, LOCS implantation could also greatly decrease chondroitin sulfate proteoglycan (CSPG) deposition at the lesion site. These findings suggest that endogenous neurogenesis following acute complete SCI is achievable in species ranging from rodents to large animals via functional scaffold implantation. LOCS-based Cetuximab delivery system has a promising therapeutic effect on activating endogenous neurogenesis, reducing CSPGs deposition and improving motor function recovery.


Assuntos
Cetuximab/química , Cetuximab/farmacologia , Colágeno/química , Receptores ErbB/antagonistas & inibidores , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Alicerces Teciduais , Doença Aguda , Animais , Diferenciação Celular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cães , Feminino , Humanos , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA