Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 424-450, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003060

RESUMO

The electrokinetic (EK) process has been proposed for soil decontamination from heavy metals and organic matter. The advantages of the EK process include the low operating energy, suitability for fine-grained soil decontamination, and no need for excavation. During the last three decades, enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils. Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants. EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies. Hybridization of the EK process with phytoremediation, bioremediation, or reactive filter media (RFM) improved the remediation process performance by capturing contaminants or facilitating biological agents' movement in the soil. Also, EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements. This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process. The study also covered the impact of operating parameters, imperfect pollution separation, and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance. Finally, a comparison between various remediation processes was presented to highlight the pros and cons of these technologies.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/química , Recuperação e Remediação Ambiental/métodos , Solo/química , Biodegradação Ambiental
2.
J Hazard Mater ; 460: 132360, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657326

RESUMO

The efficacy of the Standalone Electrokinetic (EK) process in soil PFAS removal is negligible, primarily due to the intersecting mechanisms of electromigration and electroosmosis transportation. Consequently, the redistribution of PFAS across the soil matrix occurs, hampering effective remediation efforts. Permeable reactive barrier (PRB) has been used to capture contaminants and extract them at the end of the EK process. This study conducted laboratory-scale tests to evaluate the feasibility of the iron slag PRB enhanced-EK process in conjunction with Sodium Cholate (NaC) biosurfactant as a cost-effective and sustainable method for removing PFOA from the soil. A 2 cm iron slag-based PRB with a pH of 9.5, obtained from the steel-making industry, was strategically embedded in the middle of the EK reactors to capture PFOA within the soil. The main component of the slag, iron oxide, exhibited significant adsorption capacity for PFOA contamination. The laboratory-scale tests were conducted over two weeks, revealing a PFOA removal rate of more than 79% in the slag/activated carbon PRB-EK test with NaC enhancement and 70% PFOA removal in the slag/activated carbon PRB-EK without NaC. By extending the duration of the slag/AC PRB-EK test with NaC enhancement to three weeks, the PFOA removal rate increased to 94.09%, with the slag/AC PRB capturing over 87% of the initial PFOA concentration of 10 mg/L. The specific energy required for soil decontamination by the EK process was determined to be 0.15 kWh/kg. The outcomes of this study confirm the feasibility of utilizing iron slag waste in the EK process to capture PFOA contaminants, offering a sustainable approach to soil decontamination. Combining iron slag PRB and NaC biosurfactant provides a cost-effective and environmentally friendly method for efficient PFOA removal from soil.

3.
J Environ Manage ; 277: 111422, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010658

RESUMO

Electrokinetic (EK) by coupling surfactants is an enhanced promising remediation technology to eliminate hydrophobic organic contaminants (HOCs) from low-permeable soils. It is also applied to remediate kerosene-contaminated soils using anionic (SDS) and non-ionic (Tween 80) surfactants at different concentrations. There was negligible removal efficiency (40%) of kerosene during traditional EK without any enhancement technique. In the present study, the application of 0.005M and 0.01M SDS in EK-SDS-1 and EK-SDS-2 improved the removal efficiency to 50 and 55%, respectively towards the anode. Furthermore, the use of Tween 80 in EK-Tw80-1 and EK-Tw80-2 at 0.1 and 1% concentrations was able to raise kerosene removal gradually from 45% to 52% towards the cathode. These findings suggest that higher concentrations of SDS and Tween 80 contribute to the more effective elimination of kerosene. Thus, in EK-SDS-Tw80-V1.5 and EK-SDS-Tw80-V2, SDS and Tween 80 were used simultaneously at higher concentrations, which led to 63 and 67% kerosene removal, respectively. Considering the maximum removal in EK-SDS-Tw80-V2, the energy consumption in EK-SDS-Tw80-V2 was 178 KWh/m3 due to the higher voltage gradient; whereas without increased voltage in EK-SDS-Tw80-V1.5, this amount was decreased to 84 KWh/m3. It is to be mentioned that the electro-osmotic flow (EOF) played a significant role in minimizing kerosene concentration during the EK process, particularly when combined with surfactants.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluição Ambiental , Querosene , Solo , Poluentes do Solo/análise , Tensoativos
4.
Chemosphere ; 258: 127376, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32563070

RESUMO

In this study, desorption kinetic was determined for decabromodiphenyl ether (BDE209) in a low permeability soil, and the remediation potential of hydroxypropyl-ß-cyclodextrin (HPCD) enhanced electrokinetic (EK) technique was investigated. The results indicated that the release rate of BDE209 in slowly and very slowly desorbing process was accounted for 31% and 68% in the whole desorption process, respectively. The final desorption rate of BDE209 was 20.7% after 70 h treatment with 5% HPCD in an ideal solution reaction system (without electric field). However, the removal efficiency of BDE209 in section S5 (near anode) of EK1 and EK2 had reached 22% and 20% after 14 days treatment, respectively. Thus it can be assumed that the interaction between BDE209 (on soil particles) and HPCD had been promoted under the electric field. A higher cumulative EOF did not remove more BDE209 with HPCD as facilitating agent, which might due to the low viscosity of HPCD and it did not react completely with BDE209 in soils. In addition, the removal efficiency of BDE209 in section S5 of CK1 and CK2 (without HPCD) had reached 6% and 10%, respectively, which might attribute to the desorption promoting effect of the uniform electric field on hydrophobic organic contaminants. In summary, it is feasible to use the EK to remove BDE209 in low permeability soils using HPCD as solubilizing agent, and the technique key is maintaining sufficient EOF and ensuring the contact reaction efficiency between HPCD and BDE209 synchronously.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Técnicas Eletroquímicas/métodos , Recuperação e Remediação Ambiental/métodos , Éteres Difenil Halogenados/análise , Poluentes do Solo/análise , Solo/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Permeabilidade , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA