Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pathol Res Pract ; 253: 154988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118215

RESUMO

Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Gastrointestinais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Respir Res ; 24(1): 222, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710230

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS: The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS: Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFß1 signalling via the TGFß1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFß1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS: These findings introduce a novel regulating mechanism of TGFß1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibroblastos , Proteínas de Ligação ao Cálcio
3.
J Neuroinflammation ; 20(1): 155, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391829

RESUMO

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal neurons, which causes disabling motor disorders. Scientific findings support the role of epigenetics mechanism in the development and progression of many neurodegenerative diseases, including PD. In this field, some studies highlighted an upregulation of Enhancer of zeste homolog 2 (EZH2) in the brains of PD patients, indicating the possible pathogenic role of this methyltransferase in PD. The aim of this study was to evaluate the neuroprotective effects of GSK-343, an EZH2 inhibitor, in an in vivo model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degeneration. Specifically, nigrostriatal degeneration was induced by MPTP intraperitoneal injection. GSK-343 was administered intraperitoneally daily at doses of 1 mg/kg, 5 mg/kg and 10 mg/kg, mice were killed 7 days after MPTP injection. Our results demonstrated that GSK-343 treatment significantly improved behavioral deficits and reduced the alteration of PD hallmarks. Furthermore, GSK-343 administration significantly attenuated the neuroinflammatory state through the modulation of canonical and non-canonical NF-κB/IκBα pathway as well as the cytokines expression and glia activation, also reducing the apoptosis process. In conclusion, the obtained results provide further evidence that epigenetic mechanisms play a pathogenic role in PD demonstrating that the inhibition of EZH2, mediated by GSK-343, could be considered a valuable pharmacological strategy for PD.


Assuntos
Fármacos Neuroprotetores , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Apoptose , Cegueira , Encéfalo , Citocinas
4.
Transl Androl Urol ; 12(1): 71-82, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36760869

RESUMO

Background: The enhancer of zeste homolog 2 (EZH2) plays an important role in the tumor microenvironment (TME), and EZH2 in shaping the epigenetic landscape of CD8+ T cell fate and function, with a particular emphasis on cancer. Here, high EZH2 expression always leads to less CD8+ T cell infiltration. However, clear cell renal cell carcinoma (ccRCC) is reportedly a "hot" tumor, with contradictory high EZH2 expression. Our goal was to construct a EZH2-regulated immune risk score prognostic model to predict ccRCC outcomes, and provide a prospect of clinical EZH2 inhibitors in fine-tuning T cell responses with immune therapy. Methods: We downloaded and analyzed The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), TISIDB database, and WebGestalt for ccRCC patients, EZH2-related tumor-infiltrating lymphocytes and immunomodulators. R packages "limma", "BiocManager", and "preprocessCore", etc. were downloaded to prepare CIBERSORT files, immune cells heatmap, multivariable Cox model and survival analysis. The EZH2-regulated immune risk model's prognostic ability was calculated by receiver operating characteristic (ROC) and area under the curve (AUC) analyses in R studio. Results: EZH2 was highly expressed and related to poor outcome in ccRCC. However, high-expression EZH2 was not related to a "cool" tumor. Of the 49 immunomodulators significantly regulated by EZH2, forest plot showed 26 immunomodulators signatures independently associated with overall survival. The EZH2-regulated immune-risk score prognostic model was an independent prognostic factor (AUC =0.816), especially combined with clinicopathologic parameters in ccRCC overall survival prediction. Conclusions: The EZH2-regulated immune-risk score prognostic model was an independent prognostic factor, with good accuracy and predictability, and could provide experimental data to the clinical area.

5.
In Vivo ; 36(6): 2669-2677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36309370

RESUMO

BACKGROUND/AIM: The over-expression of enhancer of zeste homolog 2 (EZH2) protein is found in oral cancer tissues. However, the genetic role of the enhancer of EZH2 in the etiology of oral cancer is unknown. The aim of this study was to evaluate the association of EZH2 genotypes with oral cancer risk among Taiwanese. MATERIALS AND METHODS: Three polymorphic variants of EZH2, rs887569 (C to T), rs41277434 (A to C), and rs3757441 (T to C), were analyzed regarding their association with oral cancer risk among 958 oral cancer patients and the same number of healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In addition, the interaction of EZH2 rs887569, rs41277434, and rs3757441 genotypes with personal behaviors such as smoking, alcohol drinking, and betel quid chewing were also examined. RESULTS: The EZH2 genotypes rs887569, rs41277434, and rs3757441, were not significantly associated with oral cancer risk (p for trend=0.1735, 0.5658, and 0.4606, respectively). The analysis of allelic frequency distribution also supported the findings that the variant alleles at EZH2 rs887569, rs41277434, and rs3757441 may not serve as determinants of oral cancer risk (all p>0.05). There was no interaction between EZH2 rs887569, rs41277434, or rs3757441 genotypes with personal smoking, alcohol drinking or betel quid chewing behaviors. CONCLUSION: EZH2 genotypes cannot predict oral cancer risk in Taiwan.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Bucais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Genótipo , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/genética , Taiwan , Fatores de Risco , Estudos de Casos e Controles
6.
Am J Transl Res ; 14(4): 2212-2230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559404

RESUMO

Exposure of skin to ultraviolet B (UVB) irradiation induces oxidative damage, immune suppression, inflammation, and skin cancer. Recently, an increase in the use of traditional Chinese medicine decoction with antioxidant properties has emerged as protection for skin tissues against UVB-induced damage. The aim of this study was to investigate mechanisms of the protective effect of the Haoqin-Huaban formula (HQHB) on UVB-induced skin damage. First, cell survival, apoptosis, and oxidative stress were evaluated upon UVB irradiation in the presence of HQHB using HaCaT cells and mice as model systems. Subsequently, bioinformatic analyses, RNA pulldown assays, RNA immunoprecipitation, luciferase reporter assays, and chromatin immunoprecipitation were conducted to verify the regulation among HQHB, hypoxia-inducible factor 1α (HIF-1α), HOXA11-AS and enhancer of zeste homolog 2 (EZH2) in HaCaT cells. In this study, we found that administration of HQHB inhibited, in a dose-dependent manner, UVB-induced skin damage by eliminating oxidative stress. HQHB was found to upregulate HOXA11-AS expression by activating HIF-1α. Furthermore, HOXA11-AS stabilized the EZH2 protein by inhibiting its ubiquitination and proteasomal degradation. Consequently, rescue assays demonstrated that HOXA11-AS promoted proliferation and inhibited apoptosis in HaCaT cells by reducing oxidative stress. Taken together, our results help to elucidate the function and regulatory mechanism of HQHB in reducing UVB-induced skin damage.

7.
Adv Sci (Weinh) ; 9(14): e2105539, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293697

RESUMO

The methyltransferase EZH2 plays an important role in regulating chromatin conformation and gene transcription. Phosphorylation of EZH2 at S21 by AKT kinase suppresses its function. However, protein phosphatases responsible for the dephosphorylation of EZH2-S21 remain elusive. Here, it is demonstrated that EZH2 is highly expressed in the ocular lens, and AKT-EZH2 axis is important in TGFß-induced epithelial-mesenchymal transition (EMT). More importantly, it is identified that MYPT1/PP1 dephosphorylates EZH2-S21 and thus modulates its functions. MYPT1 knockout accelerates EMT, but expression of the EZH2-S21A mutant suppresses EMT through control of multiple families of genes. Furthermore, the phosphorylation status and gene expression modulation of EZH2 are implicated in control of anterior subcapsular cataracts (ASC) in human and mouse eyes. Together, the results identify the specific phosphatase for EZH2-S21 and reveal EZH2 dephosphorylation control of several families of genes implicated in lens EMT and ASC pathogenesis. These results provide important novel information in EZH2 function and regulation.


Assuntos
Catarata , Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Cristalino , Animais , Catarata/genética , Catarata/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibrose , Humanos , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Molecules ; 28(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615293

RESUMO

Since natural substances are widely explored as epigenetic modulators of gene expression and epigenetic abnormalities are important causes of cancerogenesis, factors with pro-tumor activities subjected to epigenetic control, e.g., neutral endopeptidase (NEP, neprilysin), are promising anticancer targets for potential therapies acting via epigenetic regulation of gene expression. Alpha-ketoglutarate (AKG) is a naturally occurring co-substrate for enzymes involved in histone and DNA demethylation with suggested anti-cancer activity. Hence, we investigated a potential effect of AKG on the NEP expression in cells derived from various cancers (cervical, colon, osteosarcoma) and normal epithelial cells and osteoblasts. Moreover, the overall methylation status of histone H3 was explored to establish the molecular target of AKG activity. Additionally, it was investigated whether AKG in combination with thiorphan (NEP specific inhibitor) exhibited enhanced anticancer activity. The results revealed that AKG downregulated the expression of NEP at the protein level only in highly aggressive osteosarcoma HOS cells (flow cytometry and fluorometric assays), and this protease was found to be involved in AKG-induced growth inhibition in osteosarcoma cells (siRNA NEP silencing, BrdU assay, flow cytometry). Unexpectedly, AKG-induced hypermethylation of H3K27 in HOS cells, which was partially dependent on EZH2 activity. However, this effect was not implicated in the AKG-induced NEP downregulation (flow cytometry). Finally, the combined treatment with AKG and thiorphan was shown to significantly enhance the growth inhibitory potential of each one towards HOS cells (BrdU assay). These preliminary studies have shown for the first time that the downregulation of NEP expression is a promising target in therapies of NEP-implicating HOS cells. Moreover, this therapeutic goal can be achieved via AKG-induced downregulation of NEP and synergistic activity of AKG with thiorphan, i.e., a NEP specific inhibitor. Furthermore, this study has reported for the first time that exogenous AKG can influence the activity of histone methyltransferase, EZH2. However, this issue needs further investigation to elucidate the mechanisms of this phenomenon.


Assuntos
Osteossarcoma , Tiorfano , Humanos , Tiorfano/metabolismo , Neprilisina , Ácidos Cetoglutáricos/farmacologia , Epigênese Genética , Bromodesoxiuridina , Histonas/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética
9.
Biomed Pharmacother ; 146: 112532, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906772

RESUMO

Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.


Assuntos
Neoplasias Encefálicas , Proteína Potenciadora do Homólogo 2 de Zeste , MicroRNAs , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Dig Liver Dis ; 54(6): 776-783, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34789399

RESUMO

BACKGROUND: PPI-refractory gastroesophageal reflux disease (RGERD) is characterized as the existence of reflux symptoms resistant to optimized PPI treatment. Alleviated mucosal integrity has been regarded as one of the mechanisms of RGERD. METHODS: RNA sequencing analysis and GSEA were performed. Human biopsy samples, cell lines, and rat models were recruited. Trans-epithelial electrical resistance (TEER) was tested and a FITC-dextran flux assay was performed to detect barrier permeability. Tissue morphology was evaluated using HE staining, while gene expression was measured by qRT-PCR, western blotting, flow cytometry, immunofluorescence, immunohistochemistry, and chromatin immunoprecipitation (ChIP) analysis. RESULTS: The tight junction protein Claudin-1 is significantly weakened in the RGERD epithelium, while levels of EZH2-mediated H3K27me3 were increased. Forced EZH2 expression in epithelial cells led to H3K27me3 accumulation and Claudin-1 suppression, which consequently caused epithelial barrier dysfunction. Notably, studies on esophagogastroduodenal anastomosis (EGDA) rat models showed the attenuation of Claudin-1 level and barrier function could be rescued by an Ezh2 inhibitor GSK126. ChIP analysis followed by qPCR (ChIP-qPCR) revealed H3K27me3 suppressed CLDN1 via accumulating at the TSS area. CONCLUSION: For the first time, we explored the attenuated tight junction of RGERD, demonstrating a potential underlying mechanism that EZH2-mediated H3K27me3 could impair esophageal epithelial barrier function by suppressing the transcription of CLDN1.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Refluxo Gastroesofágico , Histonas , Animais , Claudina-1/genética , Claudina-1/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/metabolismo , Histonas/metabolismo , Humanos , Ratos , Junções Íntimas/metabolismo
11.
Reprod Sci ; 29(10): 2820-2828, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34820775

RESUMO

Macrophages are known to be pivotal for ensuring the establishment of the immune tolerance microenvironment at the maternal-fetal interface. In particular, trophoblasts stay in close contact with decidual macrophages (DMs), which have been reported to play an active role in the modulation of the polarization of DMs. Thus, any dysfunction of trophoblasts might be associated with certain pregnancy-related complications, such as recurrent spontaneous abortion (RSA). Enhancer of zeste homolog 2 (EZH2) is an important epigenetic regulatory gene that has been previously shown to be related to immune regulation. The present study assessed the expression of EZH2 in villi tissue obtained from healthy controls and RSA patients. Trophoblasts conditioned medium was collected to incubate macrophages differentiated from the THP-1 cell line. The expression and function of EZH2 in trophoblasts were knocked down either by the use of siRNA or GSK126 as an inhibitor. Our results show a significant decrease in the expression of EZH2 in villi tissue from RSA patients as compared to healthy controls. Further, the inhibition of expression or function of EZH2 in trophoblasts promoted M1 macrophage polarization, which might be involved in the pathogenesis of RSA. Moreover, the suppression of EZH2 was found to affect the secretion of immune and inflammatory cytokines in trophoblasts. Altogether, these results indicated the importance of EZH2 in the regulation of immune functions of trophoblasts and thus highlighted its potential to be explored as a therapeutic target to prevent and treat pregnancy loss.


Assuntos
Aborto Habitual , Aborto Espontâneo , Aborto Espontâneo/metabolismo , Meios de Cultivo Condicionados , Citocinas/metabolismo , Decídua/metabolismo , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Humanos , Macrófagos/metabolismo , Gravidez , RNA Interferente Pequeno/metabolismo , Trofoblastos/metabolismo
12.
Virchows Arch ; 479(4): 697-703, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34115196

RESUMO

Bile duct biopsy is being increasingly performed in number for a definite diagnosis of cholangiocarcinoma. However, difficulties are associated with a histopathological diagnosis because of the limited small amount of specimen obtained and crash artifact. The aim of the present study was to identify useful diagnostic immunohistochemical markers in bile duct biopsy that support a histological diagnosis. Fifty-one bile duct biopsy samples, including 26 samples taken from patients with cholangiocarcinoma, 11 with intraductal papillary neoplasm of the bile duct (IPNB), and 14 with benign bile duct lesions, were examined. Histology and the immunohistochemical expression of insulin-like growth factor II mRNA-binding protein 3 (IMP3), enhancer of zeste homolog 2 (EZH2), and p53 were assessed. They were then evaluated for their usefulness as diagnostic markers of malignancy. The diagnostic sensitivity and accuracy of the institutional histological diagnosis were 53.8% and 70.0%, respectively. The diagnostic sensitivity and accuracy of IMP3, EZH2, and p53 were 69.2% and 80.0%, 76.9% and 85.0%, and 50.0% and 67.5%, respectively. Immunohistochemical staining for EZH2; the combination of either 2 of IMP3, EZH2, and p53; or the combination of IMP3, EZH2, and p53 significantly increased sensitivity and accuracy over those of the institutional histological diagnosis (p<0.05). In conclusion, an immunohistochemical panel consisting of IMP3, EZH2, and p53 increases the diagnostic sensitivity and accuracy of bile duct biopsy for the diagnosis of cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares/metabolismo , Colangiocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/fisiologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/análise , Biópsia/métodos , Colangiocarcinoma/metabolismo , Confiabilidade dos Dados , Diagnóstico Diferencial , Proteína Potenciadora do Homólogo 2 de Zeste/análise , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Sensibilidade e Especificidade , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/metabolismo
13.
Cancer Cytopathol ; 129(8): 612-621, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33788988

RESUMO

BACKGROUND: Bile cytology has low diagnostic sensitivity and requires ancillary techniques. This study assessed the utility of enhancer of zeste homolog 2 (EZH2) immunocytochemistry (ICC) in bile cytology. METHODS: A total of 141 bile cytology specimens from 141 patients were evaluated retrospectively. Papanicolaou-stained slides were immunostained with an antibody to EZH2. After calculation of the EZH2 labeling index (LI), the cutoff value was determined via receiver operating characteristic curve analysis. Cytological performance with and without EZH2 ICC was evaluated with reference to the final diagnosis. RESULTS: The area under the curve for the EZH2 LI was 0.955, and the cutoff value for identifying benign bile samples versus malignant ones was 24.0%. The sensitivity and specificity values for malignancy were 53.4% and 100% for routine cytology only, 89.0% and 95.7% for EZH2 ICC only, and 89.8% and 95.7% for a combination of routine cytology and EZH2 ICC. The sensitivities of EZH2 ICC only and a combination of routine cytology and EZH2 ICC were significantly improved in comparison with routine cytology only (P < .001). EZH2 ICC alone had a sensitivity of 68.0% and a specificity of 85.7% in bile samples with atypical cytology, a sensitivity of 87.0% in samples that were suspicious for malignancy, and a sensitivity of 85.7% and a specificity of 100% in samples that were negative for malignancy. CONCLUSIONS: EZH2 ICC improved the diagnostic sensitivity for pancreatobiliary adenocarcinoma in bile cytology. This method is particularly meaningful in samples of indeterminate cytology and may be useful as an initial assessment to ensure that no cancer cells are missed.


Assuntos
Neoplasias dos Ductos Biliares , Bile/citologia , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias dos Ductos Biliares/diagnóstico , Humanos , Imuno-Histoquímica , Estudos Retrospectivos
14.
Front Physiol ; 12: 640700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679454

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers including renal carcinoma. Recent studies have shown that EZH2 expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury (AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the functional role of EZH2 varies with renal cell type and disease model. In this article, we summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms and highlight EZH2 as a potential therapeutic target for kidney diseases.

15.
Cancers (Basel) ; 13(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401748

RESUMO

Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.

16.
BMC Cancer ; 20(1): 1189, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276757

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. In traditional anti-cancer therapy, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) have been proven to be beneficial for patients with EGFR mutations. However, patients with EGFR wild-type NSCLC were usually not respond to EGFR-TKIs. Enhancer of zeste homolog 2 (EZH2) is a key molecular in the PRC2 complex and plays an important role in epigenetic regulation and is overexpressed in variant tumors. EZH2 inhibitors have been reported to sensitize variant tumor cells to anticancer drugs. This study aimed to investigate whether the EZH2 inhibitors, GSK343 and DZNep when combined with gefitinib can reverse EGFR-TKIs resistance in EGFR wild-type NSCLC cells. METHODS: The RNA-sequencing data of patients with NSCLC [502 patients with lung squamous cell carcinoma, including 49 paracancerous lung tissues and 513 patients with lung adenocarcinoma (LUAD), including 59 paracancerous lung tissues] from the Cancer Genome Atlas (TCGA), were analyzed for EZH2 expression. EZH2 expression was verified in 40 NSCLC tissue cancer samples and their corresponding paracancerous tissues from our institute (TJMUGH) via RT-PCR. A549 and H1299 cells treated with siRNA or EZH2 inhibitors were subjected to cell viability and apoptosis analyses as well to EGFR pathway proteins expression analyses via western blotting. RESULTS: EZH2 was upregulated in human NSCLC tissues and correlated with poor prognosis in patients with LUAD based on data from both TCGA and TJMUGH. Both GSK343 and DZNep sensitized EGFR wild-type LUAD cells (A549 and H1299) to gefitinib and suppressed cell viability and proliferation in vitro by downregulating the phosphorylation of EGFR and AKT and by inducing cell apoptosis. Co-administration of EZH2 inhibitors (GSK343 or DZNep) with gefitinib exerted a stronger inhibitory effect on tumor activity, cell proliferation and cell migration than single drug administration in vitro and in vivo. CONCLUSIONS: These data suggest that the combination of EZH2 inhibitors with EGFR-TKIs may be an effective method for treating NSCLC-patients with EGFR-wild type, who do not want to undergo traditional treatment with chemotherapy.


Assuntos
Adenosina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Gefitinibe/farmacologia , Genes erbB-1 , Indazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Adenosina/farmacologia , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Interferência de RNA , RNA Neoplásico/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
Genome Med ; 12(1): 77, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878637

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are extensively intricate in the tumorigenesis and metastasis of various cancer types. Nevertheless, the detailed molecular mechanisms of lncRNA in non-small cell lung cancer (NSCLC) still remain mainly undetermined. METHODS: qPCR was performed to verify LINC00301 expression in NSCLC clinical specimens or cell lines. Fluorescence in situ hybridization (FISH) was conducted to identify the localization of LINC00301 in NSCLC cells. Chromatin immunoprecipitation (ChIP) was subjected to validate the binding activity between FOXC1 and LINC00301 promoters. RNA immunoprecipitation (RIP) was performed to explore the binding activity between LINC00301 and EZH2. RNA pull-down followed by dot-blot, protein domain mapping, and RNA electrophoresis mobility shift assay (EMSA) were conducted to identify the detailed binding regions between LINC00301 and EZH2. Alpha assay was conducted to quantitatively assess the interaction between LINC00301 and EZH2. RESULTS: LINC00301 is highly expressed in NSCLC and closely corelated to its prognosis by analyzing the relationship between differentially expressed lncRNAs and prognosis in NSCLC samples. in vitro and in vivo experiments revealed that LINC00301 facilitates cell proliferation, releases NSCLC cell cycle arrest, promotes cell migration and invasion, and suppresses cell apoptosis in NSCLC. In addition, LINC00301 increases regulatory T cell (Treg) while decreases CD8+ T cell population in LA-4/SLN-205-derived tumors through targeting TGF-ß. The transcription factor FOXC1 mediates LINC00301 expression in NSCLC. Bioinformatics prediction and in vitro experiments indicated that LINC00301 (83-123 nucleotide [nt]) can directly bind to the enhancer of zeste homolog 2 (EZH2) (612-727 amino acid [aa]) to promote H3K27me3 at the ELL protein-associated factor 2 (EAF2) promoter. EAF2 directly binds and stabilizes von Hippel-Lindau protein (pVHL), so downregulated EAF2 augments hypoxia-inducible factor 1 α (HIF1α) expression by regulating pVHL in NSCLC cells. Moreover, we also found that LINC00301 could function as a competing endogenous RNA (ceRNA) against miR-1276 to expedite HIF1α expression in the cytoplasm of NSCLC cells. CONCLUSIONS: In summary, our present research revealed the oncogenic roles of LINC00301 in clinical specimens as well as cellular and animal experiments, illustrating the potential roles and mechanisms of the FOXC1/LINC00301/EZH2/EAF2/pVHL/HIF1α and FOXC1/LINC00301/miR-1276/HIF1α pathways, which provides novel insights and potential theraputic targets to NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunomodulação/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , Microambiente Tumoral/genética , Animais , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Metilação de DNA , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Motivos de Nucleotídeos , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
18.
Cancer Cell Int ; 20: 204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514249

RESUMO

BACKGROUND: To explore the expression pattern and role of the novel long non-coding RNA LATS2 antisense transcript 1 (LATS2-AS1-001) in gastric cancer (GC). METHODS: qRT-PCR was applied to evaluate LATS2-AS1-001 expression and correlation with LATS2 in GC. In vitro experiments were performed to investigate the role of LATS2-AS1-001 in GC cells. RNA immunoprecipitation (RIP) was performed to assess the interaction between EZH2 and LATS2-AS1-001. LATS2/YAP1 signaling pathway proteins were detected by immunoblot. Oncomine and KMPLOT data analysis was conducted to assess the prognostic value of YAP1 in GC. RESULTS: Decreased expression levels of LATS2-AS1-001 and LATS2 were confirmed in 357 GC tissues compared with the normal mucosa. A strong positive correlation between LATS2-AS1-001 and LATS mRNA expression was found in Pearson Correlation analysis (r = 0.719, P < 0.001). Furthermore, ROC curve analysis revealed areas under the curves for LATS2-AS1-001 and LATS2 of 0.7274 and 0.6865, respectively (P < 0.001), which indicated that LATS2-AS1-001 and LATS could be used as diagnostic indicators in GC. Moreover, ectopic expression of LATS2-AS1-001 decreased cell viability, induced G0/G1 phase arrest, and inhibited cell migration and invasion in GC cells. Mechanistically, overexpressing LATS2-AS1-001 upregulated LATS2 and induced YAP1 phosphorylation via binding to EZH2. Oncomine and KMPLOT database analysis demonstrated YAP1 was highly expressed in human GC samples, and high YAP1 expression predicted poor patient prognosis in GC. CONCLUSION: This study revealed that lncRNA LATS2-AS1-001 might serve as a potential diagnostic index in GC and act as a suppressor of GC progression.

19.
Adv Sci (Weinh) ; 7(11): 1903630, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537408

RESUMO

Arsenic (As) is a widespread metalloid contaminant, and its internal exposure is demonstrated to cause serious detrimental health problems. Albeit considerable studies are performed to interrogate the molecular mechanisms responsible for As-induced toxicities, the exact mechanisms are not fully understood yet, especially at the epigenetic regulation level. In the present study, it is identified that long non-coding RNA (lncRNA) urothelial cancer associated 1 (UCA1) alleviates As-induced G2/M phase arrest in human liver cells. Intensive mechanistic investigations illustrate that UCA1 interacts with enhancer of zeste homolog 2 (EZH2) and accelerates the latter's protein turnover rate under normal and As-exposure conditions. The phosphorylation of EZH2 at the Thr-487 site by cyclin dependent kinase 1 (CDK1) is responsible for As-induced EZH2 protein degradation, and UCA1 enhances this process through increasing the interaction between CDK1 and EZH2. As a consequence, the cell cycle regulator nuclear factor of activated T cells 2 (NFATc2), a downstream target of EZH2, is upregulated to resist As-blocked cell cycle progress and cytotoxicity. In conclusion, the findings decipher a novel prosurvival signaling pathway underlying As toxicity from the perspective of epigenetic regulation: UCA1 facilitates the ubiquitination of EZH2 to upregulate NFATc2 and further antagonizes As-induced cell cycle arrest.

20.
BMC Cancer ; 20(1): 427, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408898

RESUMO

BACKGROUND: Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application. METHODS: To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis. RESULTS: Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium. CONCLUSIONS: This study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep.


Assuntos
Adenosina/análogos & derivados , Adenosil-Homocisteinase/genética , Apoptose , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Linfoma de Células B/patologia , Adenosina/farmacologia , Proliferação de Células , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA