Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Food Chem ; 463(Pt 4): 141454, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39362097

RESUMO

Browning significantly affects consumer perception, while texture hardening due to wound healing further reduces the commercial value of fresh-cut potatoes. This study evaluated the effects of 5 g L-1 ascorbic acid (AA), sodium isoascorbate (SI), and calcium ascorbate (CA) on browning and wound healing during ambient storage. The results indicated that AA and SI were more effective than CA and the control in delaying browning and wound healing. By day 3, browning levels in the AA and SI groups were reduced to 65 % and 62 % of the control, respectively, while lignin content decreased by 35 % and 40 %. Additionally, AA and SI treatments reduced reactive oxygen species (ROS) and improved antioxidant capacity, preserving appearance and texture. This study provides insights into the mechanisms of browning and wound healing, suggesting potential strategies for extending the shelf life and improving the quality of fresh-cut potatoes.

2.
Food Res Int ; 192: 114818, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147513

RESUMO

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Assuntos
Ferro , Polifenóis , Rizoma , Rizoma/química , Polifenóis/química , Polifenóis/análise , Ferro/química , Quelantes de Ferro/química , Pigmentos Biológicos/química , Catequina/química , Catequina/análogos & derivados , Catequina/análise , Levodopa/química , Lotus/química , Cromatografia Líquida de Alta Pressão , Culinária , Temperatura Alta , Ácido Clorogênico/química , Espectrometria de Massas por Ionização por Electrospray
3.
Food Chem ; 458: 140223, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954956

RESUMO

Fresh-cut pear fruit is greatly impacted by enzymatic browning, and maintaining quality remains a challenge. This study examined the impact of exogenous α-lipoic acid (α-LA) treatment on enzymatic browning and nutritional quality of fresh-cut pears. Results revealed that 0.5 g/L α-LA treatment effectively maintained color and firmness, and inhibited the increase in microbial number. The α-LA treatment also reduced MDA and H2O2 contents, decreased PPO activity, and enhanced SOD, CAT, and PAL activities. The α-LA treatment notably upregulated phenolic metabolism-related gene expression, including PbPAL, Pb4CL, PbC4H, PbCHI and PbCHS, and then increasing total phenols and flavonoids contents. Furthermore, it also influenced carbohydrate metabolism-related gene expression, including PbSS, PbSPS, PbAI and PbNI, maintaining a high level of sucrose content. These findings indicated that α-LA treatment showed promise in reducing browning and enhancing fresh-cut pears quality, offering a potential postharvest method to prolong the lifespan and maintain nutritional quality.


Assuntos
Metabolismo dos Carboidratos , Frutas , Valor Nutritivo , Fenóis , Pyrus , Ácido Tióctico , Pyrus/química , Pyrus/metabolismo , Pyrus/genética , Frutas/química , Frutas/metabolismo , Frutas/efeitos dos fármacos , Fenóis/metabolismo , Fenóis/análise , Metabolismo dos Carboidratos/efeitos dos fármacos , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Food Chem ; 459: 140420, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024869

RESUMO

The effects of γ-aminobutyric (GABA) on enzymatic browning, storage quality, membrane and reactive oxygen species (ROS) metabolism in fresh-cut stem lettuce were investigated. The results illustrated that GABA treatment delayed browning degree, polyphenol oxidase (PPO) activity and the expression of LsPPO. Meanwhile, higher chlorophyll and ascorbic acid contents were exhibited in GABA-treated stem lettuce, as well as the slower microbial propagation. Further investigation revealed that exogenous GABA application declined malondialdehyde content, electrolyte leakage and the enzyme activities of membrane metabolism, and the expression levels of related genes were also downregulated. In addition, GABA treatment scavenged ROS and strengthened the enzyme activities of ROS metabolism, as well as the expression levels of corresponding genes. Taken together, these findings implied that the repressed enzymatic browning and microbial propagation in GABA-treated stem lettuce were due to the inhibition of ROS accumulation, enhancement of membrane stability and increased resistance to oxidation.


Assuntos
Lactuca , Espécies Reativas de Oxigênio , Ácido gama-Aminobutírico , Lactuca/metabolismo , Lactuca/química , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Lipídeos de Membrana/metabolismo , Armazenamento de Alimentos , Catecol Oxidase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
Food Res Int ; 190: 114600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945570

RESUMO

Browning commonly appeared in apple processing, which varied in different apple varieties. Present work investigated the metabolomics of four varieties apple of Yataka, Gala, Sansa, and Fuji, which possessed different browning characteristics and related enzymes. Sansa as browning insensitive apple variety, exhibited the least chroma change with the lowest PPO activity and the highest SOD activity among the four apple varieties. Browning inhibition pretreatment increased the activity of SOD and PAL and decreased PPO and POD activity. In addition, metabolomic variances among the four apple varieties (FC), their browning pulp (BR) and browning inhibition pulp (CM) were compared. And the key metabolites were in-depth analyzed to match the relevant KEGG pathways and speculated metabolic networks. There were 487, 644, and 494 significant differential metabolites detected in FC, BR and CM, which were consisted of lipids, benzenoids, phenylpropanoids, organheterocyclic compounds, organic acids, nucleosides, accounting for 23 %, 11 %, 15 %, 16 %, 11 % of the total metabolites. The differential metabolites were matched with 39, 49, and 36 KEGG pathways in FC, BR, and CM, respectively, in which other secondary metabolites biosynthesis metabolism was the most significant in FC, lipid metabolism was the most significant in BR and CM, and energy metabolism was markedly annotated in CM. Notably, Sansa displayed the highest number of differential metabolites in both its BR (484) and CM (342). The BR of Sansa was characterized by flavonoid biosynthesis, while the other three apple varieties were associated with α-linolenic acid metabolism. Furthermore, in browning sensitive apple varieties, the flavonoid and phenylpropanoid biosynthesis pathway was significantly activated by browning inhibition pretreatment. Phenolic compounds, lipids, sugars, organic acids, nucleotides, and adenosine were regulated differently in the four apple varieties, potentially serving as key regulatory sites. Overall, this work provides novel insight for browning prevention in different apple varieties.


Assuntos
Frutas , Malus , Metabolômica , Malus/metabolismo , Malus/classificação , Frutas/metabolismo , Frutas/química , Manipulação de Alimentos/métodos , Reação de Maillard
6.
Food Chem ; 457: 140079, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901343

RESUMO

The unknown effect of sesame lignans on aroma formation in sesame oil via the Maillard reaction (MR) and lipid oxidation was investigated. Sesamin, sesamolin, or sesamol was added to 3 models: lysine+glucose (MR), cold-pressed sesame oil (SO), and MR + SO, and were heated at 120 °C for 60 min. All three lignans suppressed SO oxidation while increasing DPPH scavenging ability (p < 0.05). Lignans increased depletions of lysine and glucose and MR browning (p < 0.05). Lignans reduced most aroma-active pyrazines, aldehydes, ketones, alcohols, and esters (p < 0.05). Sesamol and sesamolin increased perceptions of the preferable aromas of nutty, roasted sesame, and popcorn while reducing the undesirable green and rancid aromas (p < 0.05). Sesamol demonstrated a stronger effect on lipid oxidation, MR browning, aroma formation, and sensory perception than sesamin and sesamolin. This study suggests that sesame lignans can modulate aroma formation and sensory perception of sesame oil by interacting with the MR and lipid oxidation pathways.


Assuntos
Lignanas , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Sesamum , Lignanas/química , Óleo de Gergelim/química , Sesamum/química , Odorantes/análise , Humanos , Fenóis/química , Dioxóis/química , Benzodioxóis/química
7.
Food Res Int ; 186: 114397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729739

RESUMO

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Assuntos
Glucose , Lisina , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Óleo de Gergelim/química , Glucose/química , Odorantes/análise , Lisina/química , Fenóis/química , Benzodioxóis
8.
Food Chem ; 454: 139758, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805927

RESUMO

Hot air drying (HAD) is an extensive method used on oysters and it causes the most intuitive change, a color change. However, the mechanism of color change remains unclear. This study showed that oysters underwent browning during the HAD process. The colorimetric parameter L* decreased while a* and b* increased, all of which were well described by the first-order color kinetic model. Mechanistically, the HDA process induced the oxidative browning of phenols and the generation of Maillard reaction products (5-hydroxymethylfurfural and hydrophilic pyrrole). Meanwhile, the HAD process caused lipid oxidation, leading to the reduction of phosphatidylethanolamine and the generation of reactive carbonyl compounds (aldehydes and α-dicarbonyl compounds). Moreover, the accumulation of hydrophobic pyrroles, a lipid-induced Maillard-like reaction product, was observed. These results suggest that, in addition to phenolic oxidation, sugar- and amino acid-mediated non-enzymatic browning reactions, lipid-mediated Maillard-like reactions play important roles in oyster darkening during the HAD process.


Assuntos
Cor , Temperatura Alta , Reação de Maillard , Ostreidae , Animais , Ostreidae/química , Frutos do Mar/análise , Oxirredução , Cinética , Fenóis/química , Manipulação de Alimentos , Dessecação/métodos
9.
Heliyon ; 10(10): e30936, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38799739

RESUMO

The country bean (Lablab purpureus), is a significant contributor of dietary protein and other essential components in human nutrition. Because of its elevated moisture content, it is susceptible to rapid decay, leading to losses after harvesting. The utilization of solar drying has attracted significant attention as a tactic to minimize nutrient depletion in dried goods and enhance their longevity. This study employed four solar drying techniques, namely long chimney, short chimney, box solar drying and open sun drying, along with pretreatments such as potassium metabisulfite, potassium-sodium tartrate, citric acid and ascorbic acid. The objective was to determine an effective solar drying method, combined with pretreatment, that can maintain the color and nutritional qualities of dried country bean seeds. The treatment combinations were organized in a factorial randomized complete block design (RCBD) with three replications. The data were subjected to a two-way analysis of variance (ANOVA) and a Duncan Multiple Range Test (DMRT) was conducted at a significance level of 5 % (p < 0.05). Results revealed that box solar dryer having the highest drying efficiency, retained the highest ß-carotene (82.94 %), vitamin C (90.15 %), protein (96.48 %), fat (11.63 %), and ash (90.50 %) with maximum DPPH radical scavenging activity (lowest IC50 209.49 µg/ml) compared to other driers. Besides, country bean seeds have noteworthy proximate compositions, antioxidant activity, and bioactive components treated with 1 % potassium metabisulfite. Furthermore, the country bean seeds dehydrated in box solar dryer after 1 % potassium metabisulfite treatment received the highest acceptance score on the five-point Hedonic scale (4.83-4.89 out of 5.00) and color appearance and the similar trend was further supported by principal component analysis. Thus, it can be inferred that using a box solar dryer with a 1 % potassium metabisulfite pretreatment is a feasible method for preserving the color and nutritional value of country bean seeds and reducing postharvest losses.

10.
Food Chem ; 450: 139393, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640542

RESUMO

Restructured foods are a blend of various ingredients that are dried or fried to obtain a ready-to-eat product. Several frying techniques have been employed viz., deep fat, microwave, vacuum, air, and spray frying. Deep-fat frying is the most common technique used for products that have improved texture and sensory characteristics. It facilitates various transformations that include starch gelatinization, protein denaturation, nutrient loss, non-enzymatic browning, lipid oxidation, etc. This physicochemical change alters both the product and the fried oil quality. The frying conditions will also influence the product characteristics and affect the properties of the fried product. This review focuses on the mechanisms and transformations during deep fat frying. The properties, namely physical, chemical, sensory, thermal, rheological, and microstructural changes of restructured foods were discussed. Thus, a better understanding of mechanisms and properties at optimum frying conditions would yield the desired product quality.


Assuntos
Culinária , Temperatura Alta , Humanos , Paladar
11.
Front Plant Sci ; 15: 1342639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371411

RESUMO

Enzymatic browning reactions, triggered by oxidative stress, significantly compromise the quality of harvested crops during postharvest handling. This has profound implications for the agricultural industry. Recent advances have employed a systematic, multi-omics approach to developing anti-browning treatments, thereby enhancing our understanding of the resistance mechanisms in harvested crops. This review illuminates the current multi-omics strategies, including transcriptomic, proteomic, and metabolomic methods, to elucidate the molecular mechanisms underlying browning. These strategies are pivotal for identifying potential metabolic markers or pathways that could mitigate browning in postharvest systems.

12.
Foods ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38201175

RESUMO

In this study, fresh-cut fruit salads composed of apples, pears, kiwis, and pineapples were stored at +4 °C for 18 days under distinct conditions: non-coated (NC), chitosan-coated (CH), and bergamot juice powder extract-enriched chitosan-coated (CHBE). Storage endpoint decay percentages were as follows: NC group: 100%, CH group: 26.67-53.3%, CHBE group: 13.33-26.67%. CHBE had the highest moisture content (87.05-89.64%), soluble solids (12.40-13.26%), and chroma values (2.35-6.60). CHBE and NC groups had 2.10% and 6.61% weight loss, respectively. The NC group had the highest polyphenol oxidase activity (19.48 U mL-1) and browning index (0.70 A420/g); CH group: 0.85 U mL-1, 0.35 A420/g; CHBE group: 0.57 U mL-1, 0.27 A420/g. CHBE showed a titratable acidity of 1.33% and pH 3.73 post-storage, impeding microbial proliferation with the lowest counts (2.30-3.24 log CFU g-1). The microbial suitability of the NC group diminished after day 6, with an overall preference score of 1.00. Conversely, the CH and CHBE groups scored 3.15 and 4.56, highlighting the coatings' effectiveness. Bergamot juice powder extract further enhanced this, mitigating browning and enhancing quality. Results reveal tailored coatings' potential to extend shelf life, improve quality, and enhance fruit salads' acceptability. This study underscores the importance of edible coatings in addressing preservation challenges, emphasizing their role in enhancing food quality and consumer acceptability. Incorporating edible coatings is pivotal in mitigating deterioration issues and ensuring the overall success of fresh-cut fruit products in the market.

13.
Antioxidants (Basel) ; 12(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37760091

RESUMO

The Maillard reaction is well known for producing antioxidant compounds alongside colored substances. Low-molecular-weight antioxidant intermediates such as maltol (MAL) or norfuraneol (NF) are well described, but it is still unclear which of these Maillard intermediates are the precursors of antioxidant and colored melanoidins-the so-called late stage Maillard reaction products. This study aimed to provide novel insights into the correlation between browning potential and antioxidant properties of reaction products formed during the heat treatment of prominent Maillard reaction intermediates. It was achieved by the incubation of binary reaction systems composed of methylglyoxal (MGO) or NF in combination with furfural (FF), MAL, and pyrrole-2-carbaldehyde (PA) at pH 5 and 130 °C for up to 120 min. Overall, it could be shown that the formation of colored products in the binary NF reaction systems was more efficient compared to those of MGO. This was reflected in an increased browning intensity of up to 400% and a lower conversion rate of NF compared to MGO. The colorants formed by NF and FF or PA (~0.34 kDa and 10-100 kDa) were also found to exhibit higher molecular weights compared to the analogue products formed in the MGO incubations (<0.34 kDa and 10-100 kDa). The incorporation of NF into these heterogenous products with FF and PA resulted in the preservation of the initial antioxidant properties of NF (p < 0.05), whereas no antioxidant products were formed after the incubation of MGO.

14.
Food Chem ; 425: 136420, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269635

RESUMO

Non-enzymatic browning occurs widely in both white and red wines, and it has a huge impact on the color evolution and aging potential. Previous studies have proved that phenolic compounds, especially those with catechol groups, are the most important substrates involved in browning reactions of wine. This review focus on the current knowledge of non-enzymatic browning in wine resulting from monomeric flavan-3-ols. First, some relevant aspects of monomeric flavan-3-ols are introduced, including their structures, origins, chemical reactivities, as well as potential impacts on the organoleptic properties of wine. Second, the mechanism for non-enzymatic browning induced by monomeric flavan-3-ols is discussed, with an emphasis on the formation of yellow xanthylium derivatives, followed by their spectral properties and effects on the color change of wine. Finally, attentions are also be given to the factors that influence non-enzymatic browning, such as metal ions, light exposure, additives in winemaking, etc.


Assuntos
Vitis , Vinho , Vinho/análise , Fenóis/análise , Reação de Maillard , Cor , Vitis/química
15.
Food Chem ; 423: 136320, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182494

RESUMO

Maillard reaction products (MRP) contribute to sensory quality of various foods. Whole grains (WG) are rich in phenols which may influence Maillard reaction pathways during thermal processing and impact WG product sensory attributes. This study investigated how WG phenolic profile affects MRP formation. Amylase-hydrolyzed wheat (white and red) and sorghum (white, red, tannin) brans were hydrothermally processed at 150 °C/6 min, and characterized for MRP using colorimetry, fluorescence spectroscopy, HPLC-MS/MS, and HS-SPME/GC-MS. Bran phenolic structure, and to a lesser extent content, had larger influence on MRP formation than protein/amino acid profile. Polymeric tannins (both in situ and when added to wheat brans) strongly inhibited volatile and non-volatile MRP intermediates and melanoidin formation, likely via their carbocation depolymerization intermediates trapping furans. Principle component analysis demonstrated clear segregation of volatiles formation based on bran phenolic profile. Phenolic composition should be considered in WG product formulation and processing to achieve desired MRP formation.


Assuntos
Grão Comestível , Espectrometria de Massas em Tandem , Grão Comestível/química , Fenóis/análise , Reação de Maillard , Taninos , Produtos Finais de Glicação Avançada/química
16.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176023

RESUMO

The color changes brought on by the enzymatic interactions of phenolic compounds with released endogenous polyphenol oxidase and the penetration of oxygen into the tissue has a significant impact on the commercialization of fresh-cut fruit, such as apples. This process causes a loss of quality in fresh-cut apples, resulting in browning of the fruit surface. By acting as a semipermeable barrier to gases and water vapor and thus lowering respiration, enzymatic browning, and water loss, edible coatings can provide a chance to increase the shelf life of fresh-cut produce. In this study, the effect of edible coatings composed of carboxymethylcellulose (CMC, 1%), sodium alginate (SA, 1%), citric acid (CA, 1%), and oxalic acid (OA, 0.5%) on fresh-cut 'Annurca Rossa del Sud' apple was studied. Four formulations of edible coatings, A. SA+CMC, B. SA+CMC+CA, C. SA+CMC+OA, and D. SA+CMC+CA+OA, were tested. Fresh-cut apples were dipped into different solutions and then stored at 4 °C, and physicochemical and biochemical analyses were performed at 0, 4, 8, and 12 days of storage. Results demonstrated that all four combinations improved the shelf-life of fresh-cut apple by slowing down the qualitative postharvest decay, total soluble solid, and titratable acidity. The browning index was highest in the control samples (82%), followed by CMC+SA (53%), CMC+SA+CA (32%), CMC+SA+OA (22%), and finally CMC+SA+CA+OA (7%) after 12 days of cold storage. Furthermore, coating application increased the bioactive compound content and antioxidant enzyme activities. Furthermore, the synergistic activity of SA+CMC+CA+OA reduces enzymatic browning, prolonging the postharvest life of minimally processed 'Annurca Rossa del Sud' apples.


Assuntos
Filmes Comestíveis , Malus , Malus/química , Frutas/química , Conservação de Alimentos/métodos , Antioxidantes/análise
17.
Food Sci Biotechnol ; 32(8): 1039-1047, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37215251

RESUMO

Choerospondias axillaris, snow pear, and apple composite fruit puree can be affected by non-enzymatic browning during storage decreasing the market value of the product. This study aimed to explore, using kinetic methods, the effects of non-enzymatic precursors (polyphenols and ascorbic acid) and intermediates (5-hydroxymethylfurfural) on fruit puree stored at 4 °C for 35 days. The results showed that ascorbic acid fitted the first-order reaction model, while the 5-hydroxymethylfurfural was consistent with the complex reaction model. Furthermore, the 5-hydroxymethylfurfural content was 1.53 ± 0.18 mg/L, (corresponding to an increase of 565%), and the ascorbic acid content was 0.88 ± 0.22 mg/100 g, (corresponding to a decrease of 98.5%). The results also demonstrated a change in the titratable acid, soluble solids, and pH of the fruit puree. Finally, the correlation results revealed a significant correlation between non-enzymatic browning and 5-hydroxymethylfurfural, titratable acid, and pH (p < 0.05). Overall, the results suggest that the Maillard reaction could be responsible for the non-enzymatic browning of fruit purees during storage.

18.
Food Chem X ; 17: 100614, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36974176

RESUMO

In this work, the influence of citric acid & pomelo essential oil nanoemulsion (CA&PEN) assisted with HHP on microbial counts, oxidative enzyme activity and related quality of banana puree were examined. The total aerobic bacteria (TAB) counts of all groups decreased to 1.2 âˆ¼ 2.52 lg CFU/g from 3.97 lg CFU/g, except the CA&PEN group, which was still below the detection level. CA&PEN combined with HHP (500 or 600 MPa, 5 min) succeeded in keeping TAB counts of banana puree below the detection limit for 3 months of cold storage. During 90 days of cold storage, the color, total phenolics, DPPH and ABTS antioxidant capacities were better conserved in acidified groups than non-acidified groups. In conclusion, CA&PEN assisted with HHP can be utilized to promote the inhibition of enzymatic browning and maintain the quality of banana puree, due to its reduced oxidative enzyme activity, low pH, strong antioxidant capacity and excellent color retention.

19.
Food Chem X ; 17: 100607, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36974192

RESUMO

Curcumin is a natural polyphenol that is widely used in food and medicine. Here, we investigated the effects of curcumin on the antioxidant accumulation and enzymatic browning of soybean sprouts after storage at 4 °C for 2 weeks. Curcumin drastically reduced the water loss, browning index, and peroxide accumulation, increased the activities of superoxide dismutase, catalase, and peroxidase, decreased the activities of phenylalanine ammonia-lyase and polyphenol oxidase, elevated the contents of ascorbic acid, reduced glutathione, nonprotein thiol, phenolics and isoflavones, and enhanced the total antioxidant capacity of soybean sprouts during storage. These curcumin-induced changes were partly but dramatically attenuated by inhibition of NADPH oxidase (NOX). Curcumin induced NOX activity and H2O2 burst in soybean sprouts during the first 24 h after treatment. The curcumin-induced antioxidants and -inhibited enzymatic browning are closely associated with NOX-dependent H2O2 signaling. The findings provide a new method for improving soybean sprout quality during storage.

20.
Front Nutr ; 10: 1092745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925952

RESUMO

As a traditional fermentation food, red sour soup (RSS) is very popular in China. However, browning is always occurred during the process of fermentation, which influences the sensory quality of RSS and limits its further application. Thus, it is meaningful to elucidate the main factors related to browning during the process of fermentation. Herein, the changes in various factors related to browning from group spontaneous (RSS-SF) and inoculant fermentation (RSS-IF) were determined and analyzed. Firstly, the activity changes of enzymes related to browning indicated that browning of group RSS-SF and RSS-IF during fermentation was not related to enzymatic browning. Secondly, path analysis revealed that the main factors related to non-enzymatic browning of group RSS-SF and RSS-IF were oxidation of polyphenol and degradation of ascorbic acid (Vc). The results of this study not only identifies the main factors associate with browning of RSS, but also provides foundation on how to control the browning of RSS in further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA