Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.909
Filtrar
1.
Int Microbiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980560

RESUMO

This study was conducted to examine the role of the central domain of cyclomaltodextrinase in terms of stability, substrate specificity, becoming dodecameric form, and enzyme activity. To this end, H403R/L309V double-point mutation and T280Q single-point mutation were performed at the central domain and (ß/α)8-barrel. The results indicated that the activity of the H403R/L309V mutant at the optimal pH and temperature increased by about 25% and 40%, respectively. Plus, the irreversible thermal inactivation of the H403R/L309V mutant at 60 °C and 160 min was approximately twice of the enzyme without mutation. Both mutants underwent significant structural change relative to the wild enzyme and subsequently a significant catalytic activity. However, the catalytic efficiency (kcat/Km) of the H403R/L309V mutant increased in the presence of beta- and gamma-cyclomaltodextrin substrates compared to the wild enzyme and T280Q mutant. As a result, by applying the L309V mutant and given the smaller size of the valine, leucine spatial inhibition in the wild protein seems to decline, and also it facilitates the substrate access to active site amino acids. Moreover, as gamma substrate is larger, eliminating the effect of spatial inhibition on this substrate has a greater effect on improving the catalytic activity of this enzyme.

2.
Biochimie ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960371

RESUMO

Congenital zika virus syndrome (CZS) has become a significant worldwide concern since the sudden rise of microcephaly related to zika virus (ZIKV) in Brazil. Primarily transmitted by Aedes mosquitoes, ZIKV shares serologic similarities with dengue virus (DENV), complicating the diagnosis and/or clinical management. The Angiotensin I-Converting Enzyme (ACE) was associated with either neuroprotective or anti-inflammatory properties in the central nervous system (CNS). The possible role(s) of ACE in these two flaviviruses infection remain largely unexplored. In this study, we evaluate ACE activity in the brain of ZIKV- or DENV-infected mice, both compared to MOCK, showing about 30% increased ACE activity only in ZIKV-infected mice (p = 0.024), while no change was noticed in brain from DENV-infected animals (p = 0.888). In addition, the treatment with interferon beta (IFNß), under conditions previously demonstrated to rescue the normal size of microcephalic brains determined by ZIKV infection, also restored ACE activity in ZIKV-infected animals to levels close to that of the MOCK control group. Although inflammatory responses expected for either ZIKV or DENV infections, only ZIKV was associated with microcephaly, as well as with increased ACE activity and reversion by treatment with IFNß. Furthermore, this increase in ACE activity was observed only after intracerebroventricular (ICV) injection (F (2, 16) = 7.907, p = 0.004), but not for intraperitoneal (IP) administration of ZIKV (F (2, 26) = 1.996, p = 0.156), suggesting that the observed central ACE activity modulation may be associated with the presence of this specific flavivirus in the brain.

3.
J Agric Food Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950526

RESUMO

Peanut southern blight, caused by the soil-borne pathogen Sclerotium rolfsii, is a widespread and devastating epidemic. Frequently, it is laborious to effectively control by labor-intensive foliar sprays of agrochemicals due to untimely find. In the present study, seed treatment with physcion (PHY) at doses of 0.08, 0.16, and 0.32 g AI kg-1 seed significantly improved the growth and photosynthetic activity of peanuts. Furthermore, PHY seed treatment resulted in an elevated enzymatic activity of key enzymes in peanut roots, including peroxidase, superoxide dismutase, polyphenol oxidase, catalase, lipoxygenase, and phenylalanine ammonia-lyase, as well as an increase in callus accumulation and lignin synthesis at the infection site, ultimately enhancing the root activity. This study revealed that PHY seed treatment could promote the accumulation of reactive oxygen species, salicylic acid (SA), and jasmonic acid (JA)/ethylene (ET) in peanut roots, while also decreasing the content of malondialdehyde levels in response to S. rolfsii infection. The results were further confirmed by transcriptome data and metabolomics. These findings suggest that PHY seed treatment activates the plant defense pathways mediated by SA and JA/ET in peanut roots, enhancing the resistance of peanut plants to S. rolfsii. In short, PHY is expected to be developed into a new plant-derived immunostimulant or fungicide to increase the options and means for peanut disease control.

4.
Prep Biochem Biotechnol ; : 1-12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949113

RESUMO

Recently, kafirins from white sorghum [Sorghum bicolor (L) Moench] grain have shown promise as a source of biopeptides with anti-skin aging effects (anti-inflammatory, antioxidant, and inhibition of photoaging-associated enzymes). This study employed response surface methodology (RSM) to optimize the extraction and enzymatic hydrolysis of kafirins (KAF) for the production of peptides with anti-skin aging properties. The optimization of conditions (reaction time and enzyme/substrate ratio) for liquefaction with α-amylase and hydrolysis of KAF with alcalase was performed using 32 complete factorial designs. Subsequently, ultrafiltered peptide extracts were obtained with molecular weights of 1-3 kDa (KAF-UF3) and lower than 1 kDa (KAF-UF1), which mainly contain hydrophobic amino acids (proline, leucine, isoleucine, phenylalanine, and valine) and peptide fractions with molecular weights of 0.69, 1.14, and 1.87 kDa. Consequently, the peptide extracts protected immortalized human keratinocytes (HaCaT cells) from ultraviolet B radiation (UVB)-induced damage by preventing the decrease and/or restoring the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)]. Furthermore, KAF-UF3 and KAF-UF1 inhibited (20-29%) elastase and collagenase overactivity in UVB-exposed murine fibroblasts (3T3 cells). Thus, KAF-UF3 and KAF-UF1 exhibited behavior similar to that observed with glutathione (GSH), suggesting their potential as functional peptide ingredients in skincare products.

5.
Sci Rep ; 14(1): 15213, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956158

RESUMO

Microplastic pollution, especially secondary microplastics (MPs), poses a significant threat to marine ecosystems. Despite its prevalence, the impact of natural-aged MPs on marine organisms, hindered by collection challenges, remains poorly understood. This study focused on 1-3 µm natural-aged MPs collected from Japan's coastal sea, investigating their effects on the rotifer Brachionus plicatilis sensu stricto and its reproductive mechanisms. Rotifers exposed to varying MP concentrations (0, 20, and 200 particles/mL) over 14-day batch cultures exhibited reduced population growth and fertilization rates. Down-regulation of reproductive genes and up-regulation of oxidative stress-related genes were observed, indicating MP-induced disruptions. Enhanced activities of superoxide dismutase and acetylcholinesterase and elevated malondialdehyde levels further emphasized oxidative stress. These findings underscore the detrimental impact of MPs on rotifer reproductivity, shedding light on the underlying mechanisms.


Assuntos
Microplásticos , Estresse Oxidativo , Reprodução , Rotíferos , Poluentes Químicos da Água , Animais , Rotíferos/efeitos dos fármacos , Microplásticos/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo
6.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999577

RESUMO

Fungi as heterotrophs are key participants in the decomposition of organic materials and the transformation of nutrients in agroecosystems. Ditch-buried straw return as a novel conservation management strategy can improve soil fertility and alter hydrothermal processes. However, how ditch-buried straw return strategies affect the soil fungal community is still unclear. Herein, a 7-year field trial was conducted to test the influences of burial depth (0, 10, 20, 30, and 40 cm) and the amount of ditch-buried straw (half, full, double) on the diversity, composition, and predicted functions of a soil fungal community, as well as the activities of carbon-degraded enzymes. Under the full amount of straw burial, the abundance of phylum Ascomycota was 7.5% higher as compared to other burial amount treatments. This further increased the activity of cellobiohydrolase by 32%, as revealed by the positive correlation between Ascomycota and cellobiohydrolase. With deeper straw burial, however, the abundance of Ascomycota and ß-D-glucopyranoside activity decreased. Moreover, genus Alternaria and Fusarium increased while Mortierella decreased with straw burial amount and depth. FUNgild prediction showed that plant fungal pathogens were 1- to 2-fold higher, whilst arbuscular mycorrhizal fungi were 64% lower under straw buried with double the amount and at a depth of 40 cm. Collectively, these findings suggest that ditch-buried straw return with a full amount and buried at a depth less than 30 cm could improve soil nutrient cycles and health and may be beneficial to subsequent crop production.

7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1059-1069, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977335

RESUMO

OBJECTIVE: To investigate the cell membrane-penetrating capacity of human cell-penetrating peptide hPP10 carrying human antioxidant protein Cu-Zn superoxide dismutase (Cu, Zn-SOD) and assess the antioxidant and anti-inflammatory activity of these fusion proteins. METHODS: The fusion protein hPP10-Cu, Zn-SOD was obtained by genetic engineering and identified by Western blotting. The membrane-penetrating ability of the fusion protein was evaluated by immunofluorescence assay, fluorescence colocalization assay and Western blotting, its SOD enzyme activity was detected using a commercial kit, and its effect on cell viability was assessed with MTT assay. In a HEK293 cell model of H2O2-induced oxidative stress, the effect of hPP10-Cu, Zn-SOD on cell apoptosis was analyzed with flow cytometry and RT-qPCR, and its antioxidant effect was assessed using reactive oxygen species (ROS) assay; its anti-inflammatory effect was evaluated in mouse model of TPA-induced ear inflammation by detecting expression of the inflammatory factors using RT-qPCR, Western blotting and immunohistochemistry. RESULTS: The fusion protein hPP10-Cu, Zn-SOD was successfully obtained. Immunofluorescence assay confirmed obvious membrane penetration of this fusion protein in HEK293 cells, localized both in the cell membrane and the cell nuclei after cell entry. hPP10-Cu, Zn-SOD at the concentration of 5 µmol/L exhibited strong antioxidant activity with minimal impact on cell viability at the concentration up to 10 µmol/L. The fusion protein obviously inhibited apoptosis and decreased intracellular ROS level in the oxidative stress cell model and significantly reduced mRNA and protein expression of the inflammatory factors in the mouse model of ear inflammation. CONCLUSION: The fusion protein hPP10-Cu, Zn-SOD capable of penetrating the cell membrane possesses strong antioxidant and anti-inflammatory activities with only minimal cytotoxicity, demonstrating the value of hPP10 as an efficient drug delivery vector and the potential of hPP10-Cu, Zn-SOD in the development of skincare products.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Peptídeos Penetradores de Células , Estresse Oxidativo , Superóxido Dismutase , Humanos , Camundongos , Antioxidantes/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Apoptose/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Inflamação/metabolismo , Peróxido de Hidrogênio
8.
PeerJ ; 12: e17620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952982

RESUMO

Background: This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods: Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results: The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.


Assuntos
Fungicidas Industriais , Fotossíntese , Microbiologia do Solo , Fungicidas Industriais/farmacologia , Fotossíntese/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Solanum melongena/microbiologia , Raízes de Plantas/microbiologia , Solo/química , RNA Ribossômico 16S/genética
9.
Front Plant Sci ; 15: 1401050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974980

RESUMO

Introduction: Drought stress usually inhibits plant growth, which may increase the difficulty of greening slopes. Methods: In this study, we systematically investigated the effects of arbuscular mycorrhizal (AM) fungi on the growth and drought tolerance of two plant species, Festuca elata and Cassia glauca, in a vegetation concrete environment by exogenously inoculating AM fungi and setting three drought levels: well water, moderate drought and severe drought. The results showed that plant growth was significantly inhibited under drought stress; however, AM fungi inoculation significantly promoted plant height, root length, and above- and belowground biomass in these two plant species. Results: Compared with, those in the CK treatment, the greatest increases in the net photosynthesis rate, stomatal conductance and transpiration rate in the AM treatment group were 36.72%, 210.08%, and 66.41%, respectively. Moreover, inoculation with AM fungi increased plant superoxide dismutase and catalase activities by 4.70-150.73% and 9.10-95.70%, respectively, and reduced leaf malondialdehyde content by 2.79-55.01%, which alleviated the damage caused by oxidative stress. These effects alleviated the damage caused by oxidative stress and increased the content of soluble sugars and soluble proteins in plant leaves by 1.52-65.44% and 4.67-97.54%, respectively, which further increased the drought adaptability of plants. However, inoculation with AM fungi had different effects on different plants. Conclusion: In summary, this study demonstrated that the inoculation of AM fungi in vegetation concrete environments can significantly increase plant growth and drought tolerance. The plants that formed a symbiotic structure with AM fungi had a larger root uptake area, greater water uptake capacity, and greater photosynthesis and gas exchange efficiency. In addition, AM fungi inoculation further increased the drought adaptability of the plants by increasing their antioxidant enzyme activity and regulating their metabolite content. These findings are highly important for promoting plant growth and increasing drought tolerance under drought conditions, especially for potential practical applications in areas such as slope protection, and provide useful references for future ecological engineering and sustainable development.

10.
Heliyon ; 10(12): e32789, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975065

RESUMO

Huoxiang Zhengqi San (HXZQS), a traditional Chinese herbal formula, enjoys widespread use in Chinese medicine to treat diarrhea with cold-dampness trapped spleen syndrome (CDSS), which is induced by exposure to cold and high humidity stress. This study aimed to explore its therapeutic mechanisms in mice, particularly focusing on the intestinal microbiota. Forty male SPF-grade KM mice were allocated into two groups: the normal control group (H-Cc, n = 10) and the CDSS group (H-Mc, n = 30). After modeling, H-Mc was subdivided into H-Mc (n = 15) and HXZQS treatment (H-Tc, n = 15) groups. Intestinal samples were analyzed for enzyme activity and microbiota composition. Our findings demonstrated a notable reduction in intestinal lactase activity post-HXZQS treatment (P < 0.05). Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus murinus emerged as the main dominant species across most groups. However, in the H-Mc group, Clostridium sensu stricto 1 was identified as the exclusive dominant bacteria. LEfSe analysis highlighted Clostridiales vadinBB60 group and Corynebacterium as differential bacteria in the H-Tc group, and Cyanobacteria unidentified specie in the H-Mc group. Predicted microbiota functions aligned with changes in abundance, notably in cofactors and vitamins metabolism. The collinear results of the intestinal microbiota interaction network showed that HXZQS restored cooperative interactions among rare bacteria by mitigating their mutual promotion. The HXZQS decoction effectively alleviates diarrhea with CDSS by regulating intestinal microbiota, digestive enzyme activity, and microbiota interaction. Notably, it enhances Clostridium vadinBB60 and suppresses Cyanobacteria unidentified specie, warranting further study.

11.
Sci Total Environ ; 946: 174396, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950634

RESUMO

Salt marsh has an important 'purification' role in coastal ecosystems by removing excess nitrogen that could otherwise harm aquatic life and reduce water quality. Recent studies suggest that salt marsh root exudates might be the 'control centre' for nitrogen transformation, but empirical evidence is lacking. Here we sought to estimate the direction and magnitude of nitrogen purification by salt marsh root exudates and gain a mechanistic understanding of the biogeochemical transformation pathway(s). To achieve this, we used a laboratory incubation to quantify both the root exudates and soil nitrogen purification rates, in addition to the enzyme activities and functional genes under Phragmites australis populations with different nitrogen forms addition (NO3-, NH4+ and urea). We found that NO3- and urea addition significantly stimulate P. australis root exudation of total acids, amino acids, total sugars and total organic carbon, while NH4+ addition only significantly increased total acids, amino acids and total phenol exudation. High total sugars, amino acids and total organic carbon concentrations enlarged nitrogen purification potential by stimulating the nitrogen purifying bacterial activities (including enzyme activities and related genes expression). Potential denitrification rates were not significantly elevated under NH4+ addition in comparison to NO3- and urea addition, which should be ascribed to total phenol self-toxicity and selective inhibition. Further, urea addition stimulated urease and protease activities with providing more NH4+ and NO2- substrates for elevated anaerobic ammonium oxidation rates among the nitrogen addition treatments. Overall, this study revealed that exogenous nitrogen could increase the nitrogen purification-associated bacterial activity through accelerating the root exudate release, which could stimulate the activity of nitrogen transformation, and then improve the nitrogen removal capacity in salt marsh.

12.
Int J Food Microbiol ; 422: 110814, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38972103

RESUMO

Ohmic heating (OH), an emerging food processing technology employed in the food processing industry, raises potential food safety concerns due to the recovery of sublethally injured pathogens such as Staphylococcus aureus (S. aureus). In the present study, sensitivity to various stress conditions and the changes in cellular-related factors of OH-injured S. aureus during repair were investigated. The results indicated that liquid media differences (nutrient broth (NB), phosphate-buffered saline (PBS), milk, and cucumber juice) affected the recovery process of injured cells. Nutrient enrichment determines the bacterial repair rate, and the rates of repair for these media were milk > NB > cucumber juice > PBS. The sensitivity of injured cells to various stressors, including different acids, temperature, nisin, simulated gastric fluid, and bile salt, increased during the injury phase and subsequently diminished upon repair. Additionally, the intracellular ATP content, enzyme activities (Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and T-ATPase) and ion concentrations (Mg2+, K+, and Ca2+) gradually increased during repair. After 5 h of repair, the intracellular substances content of cell's was significantly higher than that of the injured bacteria without repair, while some indicators (e.g., Na+/K+-ATPase, K+, and Ca2+) were not restored to the untreated level. The results of this study indicated that OH-injured S. aureus exhibited strengthened resistance post-recovery, potentially due to the restoration of cellular structures. These findings have implications for optimizing food storage conditions and advancing OH processes in the food industry.

13.
J Proteome Res ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973097

RESUMO

Trypsin digestion plays a pivotal role in successful bottom-up peptide characterization and quantitation. While denaturants are often incorporated to enhance protein solubility, surfactants are recognized to inhibit enzyme activity. However, several reports have suggested that incorporating surfactants or other solvent additives may enhance digestion and MS detection. Here, we assess the impacts of ionic surfactants on cumulative trypsin activity and subsequently evaluate the total digestion efficiency of a proteome mixture by quantitative MS. Although low surfactant concentrations, such as 0.01% SDS or 0.2% SDC, significantly enhanced the initial trypsin activity (by 14 or 42%, respectively), time course assays revealed accelerated enzyme deactivation, evident by 10- or 40-fold reductions in trypsin activity half-life at these respective surfactant concentrations. Despite enhanced initial tryptic activity, quantitative MS analysis of a common liver proteome extract, digested with various surfactants (0.01 or 0.1% SDS, 0.5% SDC), consistently revealed decreased peptide counts and signal intensity, indicative of a lower digestion efficiency compared to a nonsurfactant control. Furthermore, including detergents for digestion did not improve the detection of membrane proteins, nor hydrophobic peptides. These results stress the importance of assessing cumulative enzyme activity when optimizing the digestion of a proteome mixture, particularly in the presence of denaturants.

14.
J Environ Manage ; 365: 121695, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968891

RESUMO

Pyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.

15.
BMC Plant Biol ; 24(1): 655, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987695

RESUMO

BACKGROUND: Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS: The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION: Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.


Assuntos
Carvão Vegetal , Perfilação da Expressão Gênica , Nicotiana , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Transcriptoma , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Fotossíntese/efeitos dos fármacos
16.
Bioresour Technol ; 406: 131015, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906196

RESUMO

Combining iron-carbon micro-electrolysis and autotrophic denitrification is promising for nitrate removal from wastewater. In this study, four continuous reactors were constructed using CO2 and weak magnetic field (WMF) to address challenges like iron passivation and pH stability. In the reactors with CO2 + WMF (10 and 35 mT), the increase in total nitrogen removal efficiency was significantly higher (96.2 ± 1.6 % and 94.1 ± 2.7 %, respectively) than that of the control (51.6 ± 2.7 %), and Fe3O4 converted to low-density FeO(OH) and FeCO3, preventing passivation film formation. The WMF application decreased the N2O emissions flux by 8.7 % and 20.5 %, respectively. With CO2 + WMF, the relative enzyme activity and abundance of denitrifying bacteria, especially unclassified_Rhodocyclaceae and Denitratisoma, increased. Thus, this study demonstrates that CO2 and WMF optimize the nitrate removal process, significantly enhancing removal efficiency, reducing greenhouse gas emissions, and improving process stability.

17.
J Mol Biol ; 436(16): 168651, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866092

RESUMO

In Escherichia coli, many environmental stressors trigger polyphosphate (polyP) synthesis by polyphosphate kinase (PPK1), including heat, nutrient restriction, toxic compounds, and osmotic imbalances. PPK1 is essential for virulence in many pathogens and has been the target of multiple screens for small molecule inhibitors that might serve as new anti-virulence drugs. However, the mechanisms by which PPK1 activity and polyP synthesis are regulated are poorly understood. Our previous attempts to uncover PPK1 regulatory elements resulted in the discovery of PPK1* mutants, which accumulate more polyP in vivo, but do not produce more in vitro. In attempting to further characterize these mutant enzymes, we discovered that the most commonly-used PPK1 purification method - Ni-affinity chromatography using a C-terminal poly-histidine tag - altered intrinsic aspects of the PPK1 enzyme, including specific activity, oligomeric state, and kinetic values. We developed an alternative purification strategy using a C-terminal C-tag which did not have these effects. Using this strategy, we were able to demonstrate major differences in the in vitro response of PPK1 to 5-aminosalicylic acid, a known PPK1 inhibitor, and observed several key differences between the wild-type and PPK1* enzymes, including changes in oligomeric distribution, increased enzymatic activity, and increased resistance to both product (ADP) and substrate (ATP) inhibition, that help to explain their in vivo effects. Importantly, our results indicate that the C-terminal poly-histidine tag is inappropriate for purification of PPK1, and that any in vitro studies or inhibitor screens performed with such tags need to be reconsidered in that light.

18.
Talanta ; 277: 126422, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897016

RESUMO

Phenolic compounds (PCs) are diverse in nature and undergo complex migration and transformations in the environment, making it challenging to use techniques such as chromatography and other traditional methods to determine the concentration of PCs by separation, individual monitoring and subsequent addition. To address this issue, a facile and on-site strategy was developed to measure the concentration of PCs using a novel nanozyme with polyphenol oxidase-like activity. First, the nanozyme was designed by coordinating the asymmetric ligand nicotinic acid with copper to mimic the structure of mononuclear and trinuclear copper clusters of natural laccases. Subsequently, by introducing 2-mercaptonicotinic acid to regulate the valence state of copper, the composite nanozyme CuNA10S was obtained with significantly enhanced activity. Interestingly, CuNA10S was shown to have a broad substrate spectrum capable of catalyzing common PCs. Building upon the superior performance of this nanozyme, a method was developed to determine the concentration of PCs. To enable rapid on-site sensing, we designed and prepared CuNA10S-based test strips and developed a tailored smartphone sensing platform. Using paper strip sensors combined with a smartphone sensing platform with RGB streamlined the sensing process, facilitating rapid on-site analysis of PCs within a range of 0-100 µM. Our method offers a solution for the quick screening of phenolic wastewater at contaminated sites, allowing sensitive and quick monitoring of PCs without the need for standard samples. This significantly simplifies the monitoring procedure compared to more cumbersome large-scale instrumental methods.

19.
Plants (Basel) ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891333

RESUMO

Biological soil crusts (BSCs) are often referred to as the "living skin" of arid regions worldwide. Yet, the combined impact of BSCs on soil carbon (C), nitrogen (N), phosphorus (P), and enzyme activities remains not fully understood. This study identified, screened and reviewed 71 out of 2856 literature sources to assess the responses of soil C, N, P and enzyme activity to BSCs through a meta-analysis. The results indicated that BSC presence significantly increased soil C, N, P and soil enzyme activity, and this increasing effect was significantly influenced by the types of BSCs. Results from the overall effect showed that soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP) increased by 107.88%, 84.52%, 45.43%, 27.46%, and 54.71%, respectively, and four soil enzyme activities (Alkaline Phosphatase, Cellulase, Sucrase, and Urease) increased by 93.65-229.27%. The highest increases in SOC, TN and AN content occurred in the soil covered with lichen crusts and moss crusts, and significant increases in Alkaline Phosphatase and Cellulase were observed in the soil covered with moss crusts and mixed crusts, suggesting that moss crusts can synergistically enhance soil C and N pool and enzyme activity. Additionally, variations in soil C, N, P content, and enzyme activity were observed under different environmental settings, with more pronounced improvements seen in coarse and medium-textured soils compared to fine-textured soils, particularly at a depth of 5 cm from the soil surface. BSCs in desert ecosystems showed more significant increases in SOC, TN, AN, and Alkaline Phosphatase compared to forest and grassland ecosystems. Specifically, BSCs at low altitude (≤500 m) with an annual average rainfall of 0-400 mm and an annual average temperature ≤ 10 °C were the most conducive to improving soil C, N, and P levels. Our results highlight the role of BSCs and their type in increasing soil C, N, P and enzyme activities, with these effects significantly impacted by soil texture, ecosystem type, and climatic conditions. The implications of these findings are crucial for soil enhancement, ecosystem revitalization, windbreak, and sand stabilization efforts in the drylands of China.

20.
Front Biosci (Landmark Ed) ; 29(6): 203, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940033

RESUMO

BACKGROUND: Phosphine resistance in Tribolium castaneum challenges grain storage. This study investigates the impact of cytochrome P450 (CYP) enzymes and CYP346 family genes on phosphine resistance in Indian Tribolium castaneum populations. METHODS: Seven field populations of T. castaneum were compared with Lab- susceptible population for their resistance to phosphine. The levels of cytochrome P450 enzyme and expression of certain CYP346 family genes were tracked in these populations. RESULTS: The highly resistant Patiala population showed significantly increased CYP450 activity (11.26 ± 0.14 nmol/min/mg protein, 7.41-fold higher) compared to the lab-susceptible population (1.52 ± 0.09 nmol/min/mg protein) when assayed using 8 mM p-nitroanisole as the substrate. The mRNA expression was measured relative to the standard gene RPS18 and revealed significant upregulation of CYP346B1 and CYP346B3 in highly resistant populations Moga and Patiala (CYP346B1: 12.09 ± 2.19 to 21.74 ± 3.82; CYP346B3: 59.097 ± 10.265 to 50.148 ± 8.272). Patiala's CYP346B1 exhibited an impressive 685.76-fold change, and Moga's CYP346B3 showed a 361.893-fold change compared to lab-susceptible. Linear regression confirmed robust fits for each gene (R2: 0.693 to 0.756). Principal component analysis (PCA) demonstrated a strong positive correlation between CYP346 genes expression; and cytochrome P450 activity. Patiala, Moga, and Hapur populations showed conformity, associating higher resistance with increased P450 activity and CYP346 gene expression. Cluster analysis highlighted a potential correlation between CYP346B1, CYP346B2, and CYP346B3 and P450 activity, with Patiala and Moga clustering together. CONCLUSIONS: Variability in CYP346B1 and CYP346B3 in strong resistance populations may contribute to adaptation and resistance mechanisms. The study provides insights into specific CYP346 family genes associated with phosphine resistance, emphasizing the intricate interaction between CYP450 detoxifying enzymes, CYP346 family genes, and resistance mechanisms. The upregulation of CYP346 genes suggests a survival advantage for T. castaneum against phosphine, diminishing phosphine's efficacy as a pest control measure.


Assuntos
Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Fosfinas , Tribolium , Tribolium/genética , Tribolium/efeitos dos fármacos , Tribolium/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas/genética , Fosfinas/farmacologia , Inseticidas/farmacologia , Índia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA