Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 249: 120926, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043353

RESUMO

Eutrophication induced by excessive inputs of nutrient is one of the main stressors in aquatic ecosystems. Deforestation in riparian zones alter riparian shading, which together with eutrophication is expected to exert a complex control over stream food webs. We manipulated two levels of riparian shading (open canopy vs. shading canopy) and nutrient supply (ambient vs. nutrient addition) in three headwater streams to investigate the individual and combined effects of eutrophication and loss of riparian shading on carbon sources and nutritional quality of biofilms, and the subsequent trophic effects on macroinvertebrate grazers. Nutrient enrichment increased the autochthonous carbon (i.e., algae especially diatoms) indicated by fatty acid (FA) biomarkers within biofilms and grazers. The nutritional quality indicated by eicosapentaenoic acid (EPA) content of biofilms was increased with nutrient enrichment and more so with the combined effect of an increase in riparian shading, consequently leading to an increase in the nutritional quality, density, and biomass of grazers. In particular, the trophic linkages between biofilms and grazers were mainly influenced by EPA concentration in the biofilms, and strengthened with the combined effects of riparian shading and additional nutrients. Our study emphasizes the nutritional significance of EPA for consumers at higher trophic levels and proposes its potential as an indicator for monitoring the health of aquatic ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Rios , Carbono , Qualidade dos Alimentos , Eutrofização
2.
Huan Jing Ke Xue ; 42(4): 1879-1888, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742823

RESUMO

In order to explore the characteristics and driving factors of the epilithic algae community in the middle and lower reaches of the Lhasa River, epilithic algae was collected and identified in September 2019, the species composition and spatial distribution were analyzed, and the key environmental factors affecting the epilithic algae community were identified through redundancy analysis. The results indicated that 31 genera of epilithic algae belonging to six phyla were identified, and the average cell density of the epilithic algae was 1.92×106 cells·m-2. The number of species and cell density of the diatom phylum were the largest at each sampling point. The species number and cell density of the epilithic algae were significantly different between the main stream and tributaries. The main stream and tributaries contained relatively small differences in the dominant algae genera, which were Gomphonema, Fragilaria, Cymbella, and Planktolyngbya in the main stream and Gomphonema, Fragilaria, Cymbella, and Oscillatoria in the tributaries. The redundancy analysis revealed that temperature, pH, and dissolved oxygen were the main driving factors affecting the community structure of the dominant genus in the main stream, while HCO3- and flow velocity controlled the community structure of the dominant genus in the tributaries. This study provides basic data and the theoretical basis for the conservation of aquatic ecosystems and water quality management in the middle and lower reaches of the Lhasa River.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental , Tibet , Qualidade da Água
3.
Huan Jing Ke Xue ; 41(4): 1636-1647, 2020 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608669

RESUMO

To explore the relationship between the community of epilithic algae and environmental factors in tributaries of the Three Gorges Reservoir region, the epilithic algae and related environment factors were investigated from 26 sampling sites in Meixi River, a tributary of the Three Gorges Reservoir region, during flood period (August 2016), drought period (November 2016), and normal water period (March 2017). Results showed that 106 species (including varieties) belonging to 47 genera and 5 families were identified from 26 sampling sites during the three periods. Among these, 73 species belonged to 38 genera and 5 families in the flood period, 67 species belonged to 36 genera and 4 families in the drought period, and 63 species belonged to 33 genera and 4 families in the normal water period. Nineteen, 17, and 18 dominant species were identified during the flood period, drought period, and normal water period, respectively. The main dominant species were Achnanthes sp., Aphanizomenon sp., and Phormidium sp. in the flood period; Achnanthes sp., Gomphonema sp., and Microcystis sp. in the drought period; and Gomphonema sp., Nitzschia sp., and Chroococcus sp. in the normal water period. Moreover, species such as Cocconeis placentula, Achnanthes sp., Gomphonema subclavatum, G. parvulum, Navicula parva, and G. constrictum were determined to be the common dominant species during the three periods. Redundancy analysis revealed that the changes in the relative abundance of dominant species in the backwater sections were significantly related to the electrical conductivity, dissolved oxygen, pH, total phosphorus, and total nitrogen, and the relative abundance of dominant species in the natural sections was mainly related to the electrical conductivity, pH, total phosphorus, temperature, and velocity. Moreover, a different relationship with the environmental factors was determined among the three periods. However, a negative correlation between total phosphorus and the relative abundances in G. parvulum, G. constrictum, and Achnanthes sp. and a positive correlation between pH and the relative abundances in G. parvulum, G. constrictum, and Achnanthes sp. were found during the three periods. These results indicated that the differences in the hydrological regime and environmental factors in the Three Gorges Reservoir played an important role on the composition of epilithic algae community and led to a significant change in the community structure of epilithic algae.


Assuntos
Diatomáceas , Rios , China , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise
4.
Huan Jing Ke Xue ; 40(7): 3099-3107, 2019 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854707

RESUMO

In order to explore the composition of epiphytic algae and its related environmental factors, 12 sampling sites in the natural reaches and the backwater reaches (including perennial backwater sections and fluctuating backwater sections) were investigated among tributaries of the Caotang River, the Meixi River, and the Daxi River in the Fengjie district of the Chongqing section of the Three Gorges Reservoir under different hydrological regimes (i.e., storage and non-storage periods). Results showed that 103 species of epilithic algae belonging to 45 genera and 4 families are found in the 3 tributaries. This included 67 species belonging to 34 genus in the natural sections and 82 species (64 species in perennial backwater sections and 41 species in fluctuating backwater sections) belonging to 34 genera in the backwater sections. During the storage period, the dominant species in the natural sections were Melosira varians, Cocconeis placentula, Diatoma vulgure, Gyrosigma scalproides, and Oscillatoria tenuis, while the dominant species in the backwater sections were M. varians, Cymbella affinis,D. vulgure, Eucapsis alpina, and M. granulata. During the non-storage period, the dominant species in the natural sections were M. varians, C. affinis, and C. placentula, whereas the dominant species in the backwater sections were O. princeps, O. rupicola,O. formosa, Synedra acus, Ulothrix sp., Merismopedia elegans, and O. tenuis. These results suggested that the compositions of dominant species showed significant differences during the non-storage period, while little difference was found during the storage period. In addition, the dominant species did not show a significant change in the natural sections, but a marked difference was observed in the backwater sections. Similar dominant species were observed in both perennial and fluctuating backwater sections during the non-storage period, but significantly different dominant species were found during the storage period. Redundancy analysis suggested that the composition of epilithic algae was influenced by different environmental factors, such as temperature, electrical conductivity, pH, total nitrogen, and total phosphorus. Indeed, changes in the cell densities of dominant algae at the different sites were mainly affected by temperature and the concentrations of nitrogen and phosphorus. These results suggest that the different hydrological regimes had an important role not only on the reservoir water environment, but also the dynamics of epilithic algal communities.


Assuntos
Cianobactérias/fisiologia , Monitoramento Ambiental , Rios , China , Nitrogênio/análise , Fósforo/análise , Estações do Ano
5.
Environ Sci Pollut Res Int ; 24(35): 26881-26892, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25631737

RESUMO

The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m-2 (origin) to 69.58 mg m-2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m-2 day-1, respectively. The mean net primary productivity was 290.24 mg C m-2 day-1. The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO3--N, and NH4+-N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.


Assuntos
Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos/química , Rios/química , Biomassa , China , Clorofila/análise , Clorofila A , Ecossistema , Lagos/química , Nitrogênio/análise
6.
Environ Monit Assess ; 188(8): 494, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27473108

RESUMO

The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Rios/química , Alga Marinha/crescimento & desenvolvimento , Águas Residuárias/química , Poluentes Químicos da Água/análise , Alberta , Amônia/análise , Organismos Aquáticos/crescimento & desenvolvimento , Biomassa , Nitratos/análise , Estações do Ano
7.
Microb Ecol ; 72(2): 372-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273089

RESUMO

The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems.


Assuntos
Biomassa , Mudança Climática , Eutrofização/fisiologia , Inundações , Rios , Animais , Teorema de Bayes , Ecossistema , Hidrodinâmica , Invertebrados/fisiologia , Modelos Teóricos , Taiwan
8.
J Fish Biol ; 84(5): 1422-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24773539

RESUMO

Temporal trends in growth of the rusty parrotfish Scarus ferrugineus were studied on a southern Red Sea fringing reef that experiences seasonal changes in environmental conditions and benthic algal resources. Length increment data from tagging and recapture were compared among periods and sexes and modelled using GROTAG, a von Bertalanffy growth model. The growth pattern of S. ferrugineus was highly seasonal with a maximum occurring between April and June and a minimum between December and March. Body condition followed the seasonal variation in growth, increasing from April to June and decreasing from December to March. The season of maximum growth coincided with high irradiation, temperature increases and peak abundance of the primary food source, the epilithic algal community. There was a decline in growth rate during summer (July to October) associated with a combination of extreme temperatures and lowered food availability. There were strong sexual size dimorphism (SSD) and life-history traits. Terminal-phase (TP) males achieved larger asymptotic lengths than initial-phase individuals (IP) (L(∞) 34·55 v. 25·12 cm) with growth coefficients (K) of 0·26 and 0·38. The TPs were growing four times as fast as IPs of similar size. Three individuals changed from IP to TP while at liberty and grew eight times faster than IPs of similar size, suggesting that sex change in S. ferrugineus is accompanied by a surge in growth rate. The SSD in S. ferrugineus thus coincided with fast growth that started during sex change and continued into the TP. Faster growth during sex change suggests that the cost associated with sex change is limited.


Assuntos
Meio Ambiente , Perciformes/crescimento & desenvolvimento , Estações do Ano , Animais , Tamanho Corporal , Feminino , Masculino , Modelos Biológicos , Caracteres Sexuais
9.
Sci Total Environ ; 484: 43-52, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24686144

RESUMO

The proliferation of epilithic algae that form biofilms in subterranean environments, such as show caves, is a major problem for conservators. In an effort to reduce the use of chemical cleansers when addressing this problem, we proposed investigating the effects of UV-C on combating algal biofilm expansion in a cave located in northeastern France (Moidons Cave). First, the biofilms and cavity were studied in terms of their algal growth-influencing factors to understand the dynamics of colonization in these very harsh environments. Next, colorimetric measurements were used both to diagnose the initial colonization state and monitor the UV-C-treated biofilms for several months after irradiation. The results indicated that passive dispersal vectors of the viable spores and cells were the primary factors involved in the cave's algae repartition. The illumination time during visits appeared to be responsible for greater colonization in some parts of the cave. We also showed that colorimetric measurements could be used for the detection of both thin and thick biofilms, regardless of the type of colonized surface. Finally, our results showed that UV-C treatment led to bleaching of the treated biofilm due to chlorophyll degradation even one year after UV-C treatment. However, a re-colonization phenomenon was colorimetrically and visually detected 16months later, suggesting that the colonization dynamics had not been fully halted.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cavernas , Desinfecção/métodos , Microalgas/crescimento & desenvolvimento , França , História , Raios Ultravioleta
10.
Oecologia ; 118(3): 340-352, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28307278

RESUMO

Primary production in many ephemeral waters peaks soon after inundation, but the extent to which the algal biomass generated by this process is immediately available to aquatic herbivores as a food source has not been extensively studied. To examine this, we exposed natural epilithon from two permanent and two recently rewetted temporary reaches of an intermittent stream to grazing by small, presumably newly hatched, Limnodynastes tasmaniensis tadpoles and compared the algal content of tadpole feces to that of the assemblages on which they grazed. Rocks from the temporary sites, one colonized by tadpoles and one not, supported relatively flocculent, diatom-rich (79.7-85.7%) epilithon of similar biomass and taxonomic content. Epilithon from the permanent sites (one with and one without tadpoles) were more cohesive, contained fewer diatoms (57.0-60.7%), and differed in species composition from that of the temporary sites, and from one another. Feces and epilithon were more taxonomically similar when epilithon originated from temporary reaches than from permanent sites. This implies that grazing tadpoles accessed a greater percentage of the algal assemblages from recently rewetted sites. Algal species differed in susceptibility to ingestion by small tadpoles, but these differences were not consistent among habitats; susceptibility to ingestion was not predictable based solely on species growth habit, but was likely also affected by physiognomic differences in mat structure among habitats. A large percentage of algal cells ingested by tadpoles survived gut passage. `Live' cells (those with full chloroplasts) comprised 43.8-66.6% of all diatoms from epilithic samples and 27.4-42.7% of those in feces of small tadpoles. In contrast, only 12.8-14.9% of the diatoms in feces produced by large L. tasmaniensis tadpoles collected from the two tadpole-colonized sites contained full chloroplasts, suggesting higher digestion efficiency in large tadpoles than in small ones. Distinct, gut-passage-induced transitions from `live' diatoms to empty frustules or single diatom valves (`dead' cells) were evident when grazed material originated from temporary reaches. In contrast, `live' diatoms in epilithon from permanent sites were more likely to emerge in tadpole feces with reduced or fragmented chloroplasts. Thus, algae from temporary reaches appeared to be more efficiently digested than those from permanent reaches. While digestibility of individual taxa varied among sites, some algae (e.g., Synedra ulna) were clearly more digestible than others. Our results suggest that temporary stream reaches in arid-zone catchments are important sources of readily digestible autotrophic biomass for anuran species in these regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA