Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
J Environ Sci (China) ; 148: 567-578, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095189

RESUMO

Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.


Assuntos
Eritromicina , Fermentação , Metagenômica , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
2.
J Clin Med ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124594

RESUMO

Background/Objectives:Staphylococcus lugdunensis is a coagulase-negative staphylococcus (CoNS) commonly found on human skin. Unlike other CoNS, S. lugdunensis has a notable potential to cause severe infections comparable to Staphylococcus aureus. This study aimed to characterize the clinical and microbiological profile of patients with S. lugdunensis skin infections at a single center. Methods: We conducted a retrospective analysis of patient records from the Dermatology Department of the University Hospital of Heraklion, Greece, covering the period from January 2014 to January 2024. Patients' clinical presentations, demographics, infection sites, comorbidities, prior infections, antimicrobial treatments, and therapeutic responses were examined. Specimens were collected, transported, and processed according to standardized microbiological protocols. Bacterial identification and antibiotic susceptibility testing were performed using the Vitek 2 automated system and MALDI-TOF MS, with results interpreted according to Clinical and Laboratory Standards Institute (CLSI) criteria. Results: A total of 123 skin specimens positive for S. lugdunensis were analyzed. The cohort comprised 62 males (50.4%) and 61 females (49.6%), with a mean age of 40.24 ± 20.14 years. Most specimens were collected from pus (84%), primarily from below the waist (66.7%). Hidradenitis suppurativa (26%) was the most common condition associated with S. lugdunensis, followed by folliculitis, abscesses, ulcers, cellulitis, and acne. Co-infections with other bacteria were noted in 49.6% of cases, and 25.2% of infections were nosocomially acquired. The majority of patients (65%) received systemic antibiotics, predominantly amoxicillin/clavulanic acid, cefuroxime axetil, and doxycycline, with a cure rate of 100%. All isolates were susceptible to several antibiotics, though resistance to penicillin (28.5%) and clindamycin (36%) was observed. Conclusions:S. lugdunensis is a significant pathogen in skin infections, capable of causing severe disease. The high cure rate demonstrates the effectiveness of appropriate antibiotic therapy. Continued monitoring and antimicrobial stewardship are essential to manage resistance and ensure effective treatment.

3.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124894

RESUMO

High-level erythromycin (ERY) fermentation wastewater will pose serious threats to lake environments. Anaerobic digestion (AD) has advantages in treating high-level antibiotic wastewater. However, the fate of antibiotic resistance genes (ARGs) and microbial communities in AD after stepwise exposure to high-level ERY remains unclear. In this study, an AD reactor was first exposed to 0, 5, 10, 50, 100 and 200 mg/L ERY and then re-exposed to 0, 50, 200 and 500 mg/L ERY to investigate the effect of ERY on AD. The results show that AD could adapt to the presence of high-level ERY (500 mg/L) and could maintain efficient CH4 production after domestication with low-level ERY (50 mg/L). The AD process could achieve higher removal of ERY (>94%), regardless of the initial ERY concentration. ErmB and mefA, conferring resistance through target alteration and efflux pumps, respectively, were dominant in the AD process. The first exposure to ERY stimulated an increase in the total ARG abundance, while the AD process seemed to discourage ARG maintenance following re-exposure to ERY. ERY inhibited the process of acetoclastic methanogenesis, but strengthened the process of hydrogenotrophic methanogenesis. This work provides useful information for treating high-level ERY fermentation wastewater by the AD process.


Assuntos
Reatores Biológicos , Eritromicina , Eritromicina/farmacologia , Anaerobiose/efeitos dos fármacos , Águas Residuárias/microbiologia , Fermentação , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Metano/metabolismo
4.
Food Chem ; 461: 140830, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151348

RESUMO

Herein, we have manufactured a newly designed bifunctional impedimetric and amperometric immunosensor for rapidly detecting erythromycin (ERY) in complicated environments and food stuffs. For this, bimetallic cobalt/cerium-layered double hydroxide nanosheets (CoCe-LDH NSs), which was derived from Co-based zeolite imidazole framework via the structure conversion, was simultaneously utilized as the bioplatform for anchoring the ERY-targeted antibody and for modifying the gold and screen printed electrode. Basic characterizations revealed that CoCe-LDH NSs was composed of mixed metal valences, enrich redox, and abundant oxygen vacancies, facilitating the adhesion on the electrode, the antibody adsorption, and the electron transfers. The manufactured impedimetric and amperometric immunosensor based on CoCe-LDH has showed the comparable sensing performance, having a wide linear detection range from 1.0 fg mL-1 to 1.0 ng mL-1 with the ultralow detection limit toward ERY. Also, the portable, visualized, and efficient analysis of ERY was then attained at the smartphone-assisted CoCe-LDH-based SPE.

5.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125715

RESUMO

The study investigates the antibiotic resistance (AR) profiles and genetic determinants in three strains of guaiacol-producing Alicyclobacillus spp. isolated from orchard soil and pears. Their phenotypic characteristics, such as spore formation; resistance to different factors, including drugs or disinfectants; or production of off-flavor compounds, can affect the taste and aroma of spoiled products. Food and beverages are potential vectors for the transfer of antibiotic resistance genes, which is a growing health concern; thus, microorganisms in food and beverages should not be a potential source of drug resistance to consumers. Whole-genome sequencing (WGS) was utilized to identify antibiotic resistance genes, metabolic pathways, and elements associated with guaiacol and halophenol production. Minimum inhibitory concentration (MIC) testing revealed that all strains were susceptible to eight out of nine tested antibiotics (ampicillin, gentamycin, kanamycin, streptomycin, clindamycin, tetracycline, chloramphenicol, and vancomycin) but exhibited high resistance to erythromycin. Analysis indicated that the erythromycin resistance gene, ribosomal RNA small subunit methyltransferase A (RsmA), was intrinsic and likely acquired through horizontal gene transfer (HGT). The comprehensive genomic analysis provides insights into the molecular mechanisms of antibiotic resistance in Alicyclobacillus spp., highlighting the potential risk of these bacteria as vectors for antibiotic resistance genes in the food chain. This study expands the understanding of the genetic makeup of these spoilage bacteria and their role in antimicrobial resistance dissemination.


Assuntos
Alicyclobacillus , Antibacterianos , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Alicyclobacillus/genética , Alicyclobacillus/efeitos dos fármacos , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , Guaiacol/farmacologia , Guaiacol/análogos & derivados
6.
Water Environ Res ; 96(8): e11086, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39082880

RESUMO

Conventional wastewater treatment plants (WWTPs) are not designed for the abatement of antibiotics, and their effluents are one of the main entry ways of these emerging contaminants to the aquatic environment, causing major concern due to their toxicity, persistence, and bioaccumulation. When wastewater containing antibiotics enters the bioreactor, they can impact microbial communities of the activated sludge, affecting biodegradation processes of organic matter and nutrients. There is scarce information about the effect of activated carbon on the activated sludge within the bioreactor in presence of antibiotics. In light of this, the effect of representative antibiotics, ciprofloxacin (CIP), nalidixic acid (NAL), and erythromycin (ERY), on the performance of a conventional activated sludge of a WWTP was analyzed by respirometry with and without activated carbon. NAL and ERY negatively affected the net heterotrophic biomass growth rate (r'x,H), with reduction percentages of 26%-90% and 31%-81%, respectively. The addition of activated carbon mitigated this effect, especially for ERY, with increments of even 8% in the r'x,H for the hybrid process when working with 5 ppm of ERY and 80 ppm of activated carbon compared with the value in the absence of antibiotic and activated carbon. This effect was attributed to the enhanced retention of ERY, in comparison to NAL, on the surface of the activated carbon, probably due to its higher molecular size and affinity towards the activated carbon (log Kow = 3.06). This effect was more marked at low sludge retention times (below 8 days). PRACTITIONER POINTS: Ciprofloxacin (CIP), nalidixic acid (NAL), and erythromycin (ERY) were studied. NAL and ERY exerted negative impact on heterotrophic growth rate. Effect of antibiotics on microorganisms in the presence of activated carbon was studied. Activated carbon was mainly relevant for ERY due to its adsorption retention. Enhancement by activated carbon was more significant at low sludge retention times.


Assuntos
Antibacterianos , Carvão Vegetal , Esgotos , Antibacterianos/farmacologia , Antibacterianos/química , Carvão Vegetal/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Processos Heterotróficos , Eritromicina/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-39021124

RESUMO

Abstract: This retrospective study reviewed the macrolide resistance rates of Group A Streptococcus (GAS) isolates in the Northern Territory from 2012 to 2023. Clindamycin and erythromycin resistance rates peaked in 2021, at 6.0% and 12.2% respectively, and then returned to near baseline at 1-2% in 2023. Increased resistance rates were identified in the Top End of Australia from mid-2020, followed 15 months later by high rates in central Australia in 2022. Factors associated with resistant isolates were living in a rural region and of age 18 years and older. Possible explanations include a transient clonal introduction of a resistant GAS strain to the Northern Territory from 2020 to 2022. Ongoing surveillance is required to monitor regional trends and identify temporal variations in resistant isolates.


Assuntos
Antibacterianos , Clindamicina , Farmacorresistência Bacteriana , Eritromicina , Infecções Estreptocócicas , Streptococcus pyogenes , Clindamicina/farmacologia , Humanos , Eritromicina/farmacologia , Northern Territory/epidemiologia , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/tratamento farmacológico , Estudos Retrospectivos , Feminino , Adulto , Masculino , Adolescente , Pessoa de Meia-Idade , Criança , Adulto Jovem , Pré-Escolar , Idoso , Testes de Sensibilidade Microbiana , Lactente
8.
Int J Biol Macromol ; 276(Pt 2): 133999, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033898

RESUMO

Erythromycin (ERY) molecules are robust to the environment and hard to remove due to their aromatic structure. Nowadays, numerous researches have reported that the ERY amount in water is above the standard level and its removal is necessary. Here, we prepared three solid adsorbents: graphitic carbon nitride (g-C3N4), potassium carrageenan beads (Cr), and graphitic carbon nitride/gum Arabic/potassium carrageenan composite (g-ACr). Several techniques such as XRD, SEM, TEM, TGA, ATR-FTIR, Zeta potential, and N2 adsorption were employed to characterize the fabricated adsorbents. Five essential factors of adsorbent dose, initial ERY concentration, contact time, temperature, and pH were optimized to investigate the batch adsorption of ERY. The maximum adsorption capacity of 356.12 mg/g was attained by g-ACr composite at an adsorbent dose of 1.25 g/L, contact time of 6 h, and pH 7 at 15 °C. The data showed that the experimental findings exhibited the best agreement with Langmuir, Temkin, and DR isotherm models, in addition to the kinetic models of pseudo-second-order, Elovich, and intra-particle diffusion. The evaluated thermodynamic factors designated that the ERY adsorption is endothermic, physisorption, favorable, and spontaneous process. The g-ACr reusability displayed a decline in the adsorption capacity after seven adsorption/desorption runs by 5.7 %. Finally, this work outcomes depict that g-ACr composite is an efficient reusable adsorbent for ERY elimination from wastewater.

9.
Environ Sci Pollut Res Int ; 31(35): 47801-47817, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007974

RESUMO

This study investigates the fate and transport dynamics of metformin (MTN) and erythromycin (ETM), both classified as pharmaceutical and personal care products (PPCPs), in a saturated sandy soil column using temporal moment analysis (TMA). The key flow and transport parameters, including Darcy velocity, longitudinal dispersivity, adsorption, and degradation coefficients, were analyzed. The results reveal that MTN, a highly mobile contaminant, is eliminated from the column in approximately 40 days, while ETM shows significant adsorption due to its hydrophobic and adsorptive nature. Darcy velocity significantly affects PPCP transport; a one-order magnitude change alters contaminant mass recovery at the column outlet by 88% for MTN and 39-fold for ETM. Longitudinal dispersivity has minimal impact on the transport of PPCPs. However adsorption primarily governs the fate of PPCPs with high adsorption coefficients (Kd), and degradation rates control the fate of low-sorbing PPCPs. A one-order magnitude change in Kd results in a 55% change in the zeroth temporal moment (ZTM) of MTN and a 30-fold change in the case of ETM. Additionally, a one-order magnitude change in the degradation coefficient leads to a 60% variation in MTN's ZTM and a 5% variation in ETM's ZTM. Thus, TMA is a valuable tool for understanding PPCP dynamics in subsurface environments, providing critical insights for managing their increasing concentrations.


Assuntos
Eritromicina , Metformina , Eritromicina/química , Adsorção , Porosidade , Solo/química
10.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063169

RESUMO

Implant surface nanofiber (NF) coatings represent an alternative way to prevent/treat periprosthetic joint infection (PJI) via local drug release. We developed and characterized a coaxial erythromycin (EM)-doped PLGA/PCL-PVA NF coating. The purpose of this study was to determine the efficacy of EM-NF coatings (EM0, no EM, EM100 (100 mg/mL), and EM1000 (1000 mg/mL) wt/wt) in a rat PJI model. A strong bond of the EM-NF coating to the surface of titanium (Ti) pins was confirmed by in vitro mechanical testing. Micro-computed tomography (mCT) analysis showed that both EM100 and EM1000 NF effectively reduced periprosthetic osteolysis compared to EM0 at 8 and 16 weeks after implantation. Histology showed that EM100 and EM1000 coatings effectively controlled infection and enhanced periprosthetic new bone formation. The bone implant contact (BIC) of EM100 (35.08%) was higher than negative controls and EM0 (3.43% and 0%, respectively). The bone area fraction occupancy (BAFO) of EM100 (0.63 mm2) was greater than controls and EM0 (0.390 mm2 and 0.0 mm2, respectively). The BAFO of EM100 was higher than that of EM1000 (0.3 mm2). These findings may provide a basis for a new implant surface fabrication strategy aimed at reducing the risks of defective osseointegration and PJI.


Assuntos
Materiais Revestidos Biocompatíveis , Modelos Animais de Doenças , Eritromicina , Nanofibras , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Nanofibras/química , Ratos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/microbiologia , Eritromicina/farmacologia , Eritromicina/administração & dosagem , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Masculino , Titânio/química , Titânio/farmacologia , Microtomografia por Raio-X , Ratos Sprague-Dawley
11.
Structure ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39029461

RESUMO

Mycobacterial HflX confers resistance against macrolide antibiotics. However, the exact molecular mechanism is poorly understood. To gain further insights, we determined the cryo-EM structures of M. smegmatis (Msm) HflX-50S subunit and 50S subunit-erythromycin (ERY) complexes at a global resolution of approximately 3 Å. A conserved nucleotide A2286 at the gate of nascent peptide exit tunnel (NPET) adopts a swayed conformation in HflX-50S complex and interacts with a loop within the linker helical (LH) domain of MsmHflX that contains an additional 9 residues insertion. Interestingly, the swaying of this nucleotide, which is usually found in the non-swayed conformation, is induced by erythromycin binding. Furthermore, we observed that erythromycin decreases HflX's ribosome-dependent GTP hydrolysis, resulting in its enhanced binding and anti-association activity on the 50S subunit. Our findings reveal how mycobacterial HflX senses the presence of macrolides at the peptide tunnel entrance and confers antibiotic resistance in mycobacteria.

12.
Methods Mol Biol ; 2844: 123-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068336

RESUMO

In situ promoter engineering is an effective way to alter target gene expression without introducing excess DNA sequences. Recently, the CRISPR/Cas9 technologies have been proved to be efficient tools for genome editing in actinomycetes, making it easier and more efficient to perform gene insertion and substitution in actinomycetes in a scarless manner. In this chapter, we describe a routine protocol for CRISPR/Cas9-mediated promoter engineering in Saccharopolyspora erythraea NRRL 23338, which is the wild-type producer of erythromycin. This protocol can be adapted to CRISPR/Cas9-mediated gene editing, not limited to promoter engineering, in other actinomycetes, with modifications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Regiões Promotoras Genéticas , Saccharopolyspora , Saccharopolyspora/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Eritromicina , RNA Guia de Sistemas CRISPR-Cas/genética
13.
Eur J Med Chem ; 276: 116630, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972081

RESUMO

We report here on the structure-activity relationships of hybrids combining 3-descladinosyl clarithromycin with quinolones linked by extended diamine connectors. Several hybrids, exemplified by 23Bc, 23Be, 23Bf, 26Be, and 30Bc, not only restored potency against inducibly resistant pathogens but also exhibited significantly enhanced activities against constitutively resistant strains of Staphylococcus pneumoniae and Staphylococcus pyogenes, which express high-level resistance independent of clarithromycin or erythromycin induction. Additionally, the novel hybrids showed susceptibility against Gram-negative Haemophilus influenzae. Notably, hybrid 23Be demonstrated dual modes of action by inhibiting both protein synthesis and DNA replication in vitro and in vivo. Given these promising characteristics, 23Be emerges as a potential candidate for the treatment of community-acquired bacterial pneumonia.


Assuntos
Antibacterianos , Claritromicina , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Claritromicina/farmacologia , Claritromicina/química , Claritromicina/síntese química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Estrutura Molecular , Diaminas/química , Diaminas/farmacologia , Diaminas/síntese química , Haemophilus influenzae/efeitos dos fármacos , Oximas/química , Oximas/farmacologia , Oximas/síntese química , Relação Dose-Resposta a Droga , Humanos , Animais , Streptococcus pyogenes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
14.
J Thorac Dis ; 16(5): 3051-3060, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883674

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is significantly influenced by oxidative stress. Recent studies have elucidated the anti-oxidative stress properties of peroxisome proliferator-activated receptors γ (PPARγ), augmenting its known anti-inflammatory effects. The exact influence of PPARγ on oxidative stress in COPD remains elusive. This study aimed to investigate the potential mechanism by which PPARγ counteracts the oxidative stress instigated by cigarette smoke in macrophages. Methods: Macrophages were cultured and exposed to 1% cigarette smoke extract (CSE), 1 µg/mL erythromycin (EM), and 10 µmol/mL GW9662 (a PPARγ antagonist). Reactive oxygen species (ROS) in macrophages was identified using fluorescent microscopy. PPARγ expression was ascertained through reverse transcription-polymerase chain reaction (RT-PCR) and Western blot techniques. The superoxide dismutase (SOD) in macrophage supernatant was measured by enzyme linked immunosorbent assay (ELISA), as was malondialdehyde (MDA). Results: Our results shown that cigarette smoke stimulated macrophages to increase ROS release, decrease the expression of PPARγ, increase the expression of MDA and decrease the expression of SOD. After PPARγ inhibitor acted on macrophages stimulated by cigarette smoke, the expression of MDA was inhibited and the content of SOD increased. When EM was used to treat macrophages stimulated by cigarette smoke, the expression of ROS decreased, the expression of PPARγ increased, the expression of MDA decreased and the expression of SOD increased. Conclusions: This study suggests that PPARγ plays an anti-oxidative role by inhibiting the expression of MDA and promoting the expression of SOD. Cigarette smoke induces oxidative stress by inhibiting PPARγ pathway. EM inhibits oxidative stress by activating PPARγ pathway.

15.
Polymers (Basel) ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38891519

RESUMO

Near-field direct-writing electrospinning technology can be used to produce ordered micro/nanofiber membrane dressings. The application of this technology can simply realize the control of dressing porosity, compound different functional substances, and adjust their distribution, thus improving the defects of common dressings such as insufficient breathability, poor moisture retention performance, and single function. Herein, a novel multifunctional wound dressing was prepared to utilize near-field direct-writing electrospinning technology, in which calf skin collagen type I (CSC-I) and polycaprolactone (PCL) were used as the composite matrix, Hexafluoroisopropanol (HFIP) as the solvent, and erythromycin (ERY) as an anti-infective drug component. The results show that the micro/nanofiber membranes prepared by near-field direct-writing electrospinning technology can all present a complete mesh structure, excellent thermal stability, and good moisturizing properties. Moreover, the composite fiber membrane loaded with ERY not only had obvious antibacterial properties against E. coli and S. thermophilus but also a better slow-release function of drugs (it is rare to have both in traditional wound dressings). Therefore, this experimental design can provide relevant theories and an experimental foundation for preparing a new type of medical dressing with drug loading and has good guiding significance for the application and promotion of near-field direct-writing electrospinning in medical dressings.

16.
China CDC Wkly ; 6(20): 437-441, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38846358

RESUMO

What is already known about this topic?: Pertussis has reemerged as a significant public health threat, primarily due to variations in Bordetella pertussis strains, antimicrobial resistance, and vaccine evasion. What is added by this report?: All isolated strains were identified as ptxA1/ptxC2/ptxP3/prn150/fim2-1/fim3-1/fhaB1/tcfA2 type and exhibited resistance to erythromycin. Two strains showed a deficiency in Fha, thirty in Prn, and one strain exhibited multiple immunogen deficiencies. What are the implications for public health practice?: The emergence and spread of immunogen-deficient strains likely result from prolonged vaccine selection pressure, posing challenges to the efficacy of pertussis vaccines. Additionally, the ongoing dissemination of ptxP3 strains with high-level macrolide resistance presents a significant obstacle to clinical treatment strategies.

17.
World J Microbiol Biotechnol ; 40(7): 203, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753033

RESUMO

The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.


Assuntos
Biomarcadores , Escherichia coli , Peroxidação de Lipídeos , Viabilidade Microbiana , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Antibacterianos/farmacologia , Estresse Fisiológico , Água do Mar/microbiologia , Água do Mar/química , Temperatura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Meios de Cultura/química
18.
Clin Exp Pharmacol Physiol ; 51(7): e13873, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815994

RESUMO

At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In Orm-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.


Assuntos
Eritromicina , Glicogênio , Fadiga Muscular , Músculo Esquelético , Orosomucoide , Resistência Física , Animais , Eritromicina/farmacologia , Eritromicina/análogos & derivados , Camundongos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Orosomucoide/metabolismo , Resistência Física/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
19.
Front Microbiol ; 15: 1383989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694800

RESUMO

We investigated antibiotic resistance pattern in clinical bacterial pathogens isolated from in-patients and out-patients, and compared it with non-clinical bacterial isolates. 475 bacterial strains isolated from patients were examined for antibiotic resistance. Staphylococcus spp. (148; 31.1%) were found to be the most prevalent, followed by Klebsiella pneumoniae (135; 28.4%), Escherichia coli (74; 15.5%), Pseudomonas aeruginosa (65; 13.6%), Enterobacter spp. (28; 5.8%), and Acinetobacter spp. (25; 5.2%). Drug-resistant bacteria isolated were extended spectrum-ß-lactamase K. pneumoniae (8.8%), E. coli (20%), metallo-ß-lactamase P. aeruginosa (14; 2.9%), erythromycin-inducing clindamycin resistant (7.4%), and methicillin-resistant Staphylococcus species (21.6%). Pathogens belonging to the Enterobacteriaceae family were observed to undergo directional selection developing resistance against antibiotics ciprofloxacin, piperacillin-tazobactam, cefepime, and cefuroxime. Pathogens in the surgical ward exhibited higher levels of antibiotic resistance, while non-clinical P. aeruginosa and K. pneumoniae strains were more antibiotic-susceptible. Our research assisted in identifying the drugs that can be used to control infections caused by antimicrobial resistant bacteria in the population and in monitoring the prevalence of drug-resistant bacterial pathogens.

20.
Biotechnol J ; 19(5): e2400039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797723

RESUMO

Industrial production of bioactive compounds from actinobacteria, such as erythromycin and its derivatives, faces challenges in achieving optimal yields. To this end, the Design-Build-Test-Learn (DBTL) framework, a systematic metabolic engineering approach, was employed to enhance erythromycin production in Saccharopolyspora erythraea (S. erythraea) E3 strain. A genetically modified strain, S. erythraea E3-CymRP21-dcas9-sucC (S. erythraea CS), was developed by suppressing the sucC gene using an inducible promoter and dcas9 protein. The strain exhibited improved erythromycin synthesis, attributed to enhanced precursor synthesis and increased NADPH availability. Transcriptomic and metabolomic analyses revealed altered central carbon metabolism, amino acid metabolism, energy metabolism, and co-factor/vitamin metabolism in CS. Augmented amino acid metabolism led to nitrogen depletion, potentially causing cellular autolysis during later fermentation stages. By refining the fermentation process through ammonium sulfate supplementation, erythromycin yield reached 1125.66 mg L-1, a 43.5% increase. The results demonstrate the power of the DBTL methodology in optimizing erythromycin production, shedding light on its potential for revolutionizing antibiotic manufacturing in response to the global challenge of antibiotic resistance.


Assuntos
Eritromicina , Fermentação , Engenharia Metabólica , Saccharopolyspora , Eritromicina/biossíntese , Engenharia Metabólica/métodos , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA