Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt A): 750-757, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121659

RESUMO

Two-dimensional (2D) Pd-based nanostructures with a high active surface area and a large number of active sites are commonly used in alcohol oxidation research, whereas the less explored ring structure made of nanosheets with large pores is of interest. In this study, we detail the fabrication of PdCu nanorings (NRs) featuring hollow interiors and low coordinated sites using a straightforward solvothermal approach. Due to increased exposure of active sites and the synergistic effects of bimetallics, the PdCu NRs exhibited superior catalytic performance in both the ethanol oxidation reaction (EOR) and the ethylene glycol oxidation reaction (EGOR). The mass activities of PdCu NRs for EOR and EGOR were measured at 7.05 A/mg and 8.12 A/mg, respectively, surpassing those of commercial Pd/C. Furthermore, the PdCu NRs demonstrated enhanced catalytic stability, maintaining higher mass activity levels compared to other catalysts during stability testing. This research offers valuable insights for the development of efficient catalysts for alcohol oxidation.

2.
ChemSusChem ; : e202401041, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979895

RESUMO

In the present work, exfoliated graphitic carbon nitride (g-CN) is immobilized on carbon paper substrates by a simple electrophoretic route, and subsequently decorated with ultra-low amounts (≈µg/cm2) of Pt nanoparticles (NPs) by cold plasma sputtering. Optimization of preparative conditions allowed a fine tuning of Pt NPs size, loading and distribution and thus a controlled tailoring of g-CN/Pt interfacial interactions. Modulation of such features yielded g-CN-Pt-based anode materials with appealing activity and stability towards the ethanol oxidation reaction (EOR) in alkaline aqueous solutions, as revealed by electrochemical tests both in the dark and under irradiation. The present results provide new insights on the design of nano-engineered heterocomposites featuring improved performances thanks to Pt coupling with g-CN, a low-cost and environmentally friendly visible light-active semiconductor. Overall, this work might open attractive avenues for the generation of green hydrogen via aqueous ethanol electrolysis and the photo-promoted alcohol electrooxidation in fuel cells.

3.
ACS Nano ; 18(28): 18701-18711, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941536

RESUMO

Noble metal nanocrystals face challenges in effectively catalyzing electrochemical ethanol oxidation reaction (EOR)-represented multistep, multielectron transfer processes due to the linear scaling relationship among binding energies of intermediates, impeding independent optimization of individual elemental steps. Herein, we develop noble metal nanocrystals with a range of local surface binding affinities in close proximity to overcome this challenge. Experimentally, this is demonstrated by applying tensile strain to a Pd surface and decorating it with discrete Au atoms, forming a diversity of binding sites with varying affinities in close proximity for guest molecules, as evidenced by CO probing and density functional theory calculations. Such a surface enables reaction intermediates to migrate between different binding sites as needed for each elemental step, thereby reducing the energy barrier for the overall EOR when compared to reactions at a single site. On these tailored surfaces, we attain specific and mass activities of 32.7 mA cm-2 and 47.8 A mgPd-1 in EOR, surpassing commercial Pd/C by 10.9 and 43.8 times, respectively, and outperforming state-of-the-art Pd-based catalysts. These results highlight the promise of this approach in improving a variety of multistep, multielectron transfer reactions, which are crucial for energy conversion applications.

4.
ACS Appl Mater Interfaces ; 16(26): 33416-33427, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904246

RESUMO

As a novel electrochemical energy conversion device, direct ethanol fuel cells are currently encountering two significant challenges: CO poisoning and the difficulty of C-C bond cleavage in ethanol. In this work, an amorphous PdS nanowires/ultrafine IrMnOx bimetallic oxides (denoted as a-PdS/IrMnOx NWs) catalyst with abundant oxide/metal (crystalline/amorphous) inverse heterogeneous interfaces was synthesized via a hydrothermal process succeeded by a nonthermal air-plasma treatment. This unique interfacial electronic structure along with the incorporation of oxyphilic metal has resulted in a significant enhancement in the electrocatalytic performance of a-PdS/IrMnOx NWs toward the ethanol oxidation reaction, achieving current densities of 12.45 mA·cm-2 and 3.68 A·mgPd-1. Moreover, the C1 pathway selectivity for ethanol oxidation has been elevated to 47%, exceeding that of other as-prepared Pd-based counterparts and commercial Pd/C catalysts. Density functional theory calculations have validated the findings that the decoration of IrMn species onto the amorphous PdS surface has induced a charge redistribution in the interface region. The redistribution of surface charges on the a-PdS/IrMnOx NWs catalyst results in a significant decrease in the activation energy required for C-C bond cleavage and a notable weakening of the CO binding strength at the Pd active sites. Consequently, it enhanced both the EOR C1 pathway selectivity and CO poisoning resistance to the a-PdS/IrMnOx NWs catalyst.

5.
Sci Rep ; 14(1): 9907, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688944

RESUMO

The potential of metal oxides in electrochemical energy storage encouraged our research team to synthesize molybdenum oxide/tungsten oxide nanocomposites (MoO3/WO3) and their hybrid with reduced graphene oxide (rGO), in the form of MoO3/WO3/rGO as a substrate with relatively good electrical conductivity and suitable electrochemical active surface. In this context, we presented the electrochemical behavior of these nanocomposites as an electrode for supercapacitors and as a catalyst in the oxidation process of methanol/ethanol. Our engineered samples were characterized by X-ray diffraction pattern and scanning electron microscopy. As a result, MoO3/WO3 and MoO3/WO3/rGO indicated specific capacitances of 452 and 583 F/g and stability of 88.9% and 92.6% after 2000 consecutive GCD cycles, respectively. Also, MoO3/WO3 and MoO3/WO3/rGO nanocatalysts showed oxidation current densities of 117 and 170 mA/cm2 at scan rate of 50 mV/s, and stability of 71 and 89%, respectively in chronoamperometry analysis, in the MOR process. Interestingly, in the ethanol oxidation process, corresponding oxidation current densities of 42 and 106 mA/cm2 and stability values of 70 and 82% were achieved. MoO3/WO3 and MoO3/WO3/rGO can be attractive options paving the way for prospective alcohol-based fuel cells.

6.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673231

RESUMO

The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.

7.
Small ; 20(31): e2400421, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431934

RESUMO

Integrating more than one type of metal into a nanoparticle that has a well-defined morphology and composition expands the functionalities of nanocatalysts. For a metal core/porous multimetallic shell nanoparticle, the availability of catalytically active surface sites and molecular mass transport can be enhanced, and the multielemental synergy can facilitate intraparticle charge transport. In this work, a reliable and robust synthesis of such a functional tetrametallic nanoparticle type is presented, where a micro- and mesoporous PdPtIr shell is grown on Au nanorods. The effect of critical synthesis parameters, namely temperature and the addition of HCl are investigated on the hydrodynamic size of the micellar pore template as well as on the stability of the metal chloride complexes and various elemental analysis techniques prove composition of the porous multimetallic shell. Due to the synergistic properties, the tetrametallic nanorods possess extensive negative surface charge making them a promising catalyst in reduction reactions. Dye degradation as well as the conversion of p-nitrophenol to p-aminophenol is catalyzed by the supportless nanorods without light illumination. By depositing the particles onto conductive substrates, the nanostructured electrodes show promising electrocatalytic activity in ethanol oxidation reaction. The nanocatalyst presents excellent morphological stability during all the catalytic test reactions.

8.
Adv Sci (Weinh) ; 11(15): e2308958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342625

RESUMO

Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.

9.
Small ; 20(27): e2308283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412406

RESUMO

Unsatisfactory performance of ethanol oxidation reaction (EOR) catalysts hinders the application of direct ethanol fuel cells (DEFCs), while traditional alloy catalysts (like PdPt) is cursed by Sabatier principle due to countable active site types. However, bacterial soluble extracellular polymeric substances (s-EPS) owning abundent functional groups may help breacking through it by contrusting different active sites on PdPt and inducing them to play synergy effect, which is called interface engineering. Using s-EPS to engineer catalysts is more green and consumes lower energy compared to chemical reagents. Herein, PdPt alloy nanoparticles (≈2.1 nm) are successfully in situ synthesized by/on s-EPS of Bacillus megaterium, an ex-holotype. Tryptophan residuals are proved as the main reductant. In EOR, PdPt@s-EPS shows higher activity (3.89 mA cm-2) than Pd@s-EPS, Pt@s-EPS, Pt/C and most reported akin catalysts. Its stability and durability are excellent, too. DFT modelling further demonstrates that, interface engineering by s-EPS breaks through Sabatier principle, by the synergy of diverse sites owning different degrees of d-p orbital hybridization. This work not only makes DEFCs closer to practice, but provides a facile and green strategy to design more catalysts.

10.
Small ; 20(7): e2305817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814379

RESUMO

Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.

11.
Small ; 20(3): e2304990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705122

RESUMO

The splitting of the C-C bonds of ethanol remains a key issue to be addressed, despite tremendous efforts made over the past several decades. This study highlights the enhancement mechanism of inexpensive NbN-modified Pd1 Sn3 -NbN/C towards the C-C bonds cleavage for alkaline ethanol oxidation reaction (EOR). The optimal Pd1 Sn3 -NbN/C delivers a catalytic activity up to 43.5 times higher than that of commercial Pd/C and high carbonate selectivity (20.5%) toward alkaline EOR. Most impressively, the Pd1 Sn3 -NbN/C presents good durability even after 25 200 s of chronoamperometric testing. The enhanced catalytic performance is mainly due to the interfacial interaction between PdSn and NbN, demonstrated by multiple structural characterization results. In addition, in situ ATR-SEIRAS (Attenuated total reflection-surface enhanced infrared absorption spectroscopy) results suggest that NbN facilitates the C-C bonds cleavage towards the alkaline EOR, followed by the enhanced OH adsorption to promote the subsequent oxidation of C1 intermediates after doping Sn. DFT (density functional theory) calculations indicate that the activation barriers of the C-H bond cleavage in CH3 CH2 OH, CH3 CHOH, CH3 CHO, CH3 CO, CH2 CO, and the C-C bond cleavage in CH3 CO, CH2 CO, CHCO are evidently reduced and the removal of adsorbed CH3 CO and CO becomes easier on the PdSn-NbN/C catalyst surface.

12.
ACS Nano ; 17(22): 22691-22700, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926947

RESUMO

High-entropy alloys (HEAs) are significantly promising candidates for heterogeneous catalysis, yet the controllable synthesis of ultrafine HEA nanoparticles (NPs) remains a formidable challenge due to severe thermal sintering during the high-temperature fabrication process. Herein, we report a sulfur-stabilizing strategy to construct ultrafine HEA NPs with an average diameter of 4.02 nm supported on sulfur-modified Ti3C2Tx (S-Ti3C2Tx) MXene, on which the strong interfacial metal-sulfur interactions between HEA NPs and the S-Ti3C2Tx supports significantly increase the interfacial adhesion strength, thus greatly suppressing nanoparticle sintering by retarding both particle migration and metal atom diffusion. The representative quinary PtPdCuNiCo HEA-S-Ti3C2Tx exhibits excellent catalytic performance toward alkaline ethanol oxidation reaction (EOR) with an ultrahigh mass activity of 7.03 A mgPt+Pd-1, which is 4.34 and 5.17 times higher than those of the commercial Pt/C and Pd/C catalysts, respectively. In situ attenuated total reflection-infrared spectroscopy studies reveal that the high intrinsic catalytic activity for the EOR can be ascribed to the synergy of different catalytically active sites of HEA NPs and the well-designed interfacial metal-sulfur interactions.

13.
ACS Nano ; 17(17): 17180-17189, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655729

RESUMO

The ethanol oxidation reaction (EOR) is an economical pathway in many electrochemical systems for clean energy, such as ethanol fuel cells and the anodic reaction in hydrogen generation. Noble metals, such as platinum, are benchmark catalysts for EOR owing to their superb electrochemical capability. To improve sustainability and product selectivity, nickel (Ni)-based electrocatalysts are considered promising alternatives to noble-metal EOR. Although Ni-based electrocatalysts are relieved from intermediate poisoning, their performances are largely limited by their relatively high onset potential. Therefore, the EOR usually competes with the oxygen evolution reaction (OER) at working potentials, resulting in a low EOR efficiency. Here, we demonstrate a strategy to modify the surface ligands on ultrathin Ni(OH)2 nanosheets, which substantially improved their catalytic properties for the alkaline EOR. Chemisorbed octadecylamine ligands could create an alcoholophilic layer at the nanosheet surface to promote alcohol diffusion and adsorption, resulting in outstanding EOR activity and selectivity over the OER at higher potential. These non-noble-metal-based 2D electrocatalysts and surface ligand engineering showcase a promising strategy for achieving high-efficiency electrocatalysis of EOR in many practical electrochemical processes.

14.
ACS Appl Mater Interfaces ; 15(35): 41560-41568, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37608619

RESUMO

Introducing nonmetal and oxophilic metal into palladium (Pd)-based catalysts is beneficial for boosting electrocatalysis, especially regarding the improvement of mass activity (MA) and CO tolerance. Herein, the stable bismuth-doped palladium hydride (Bi/PdH) networks have been successfully fabricated through a simple one-step method. The intercalation of interstitial H atoms expands the lattice of Pd, and the doping of oxophilic metal Bi restrains the adsorption of poisonous intermediates on the surface of Pd, thereby improving the activity and durability of the as-prepared catalysts in the ethanol oxidation reaction (EOR). The obtained Bi/PdH networks manifest a remarkable MA of 8.51 A·mgPd-1, which is 11.18 times higher than that of commercial Pd/C (0.76 A·mgPd-1). The CO-stripping analysis results indicate that Bi doping can significantly prohibit CO adsorption on the surface of the Bi/PdH networks. The density functional theory (DFT) calculations also reveal that Bi doping enhances the OH* adsorption on the catalyst surface and mitigates the interaction between Pd and CO* intermediates, providing deeper insights into the origin of the enhanced EOR activity and CO tolerance. This work describes an impactful path for producing high-performance and durable PdH-based nanocatalysts.

15.
J Colloid Interface Sci ; 650(Pt B): 1509-1517, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487281

RESUMO

Three dimensional (3D) noble-metal nanomaterials with special surface structures have been regarded as high-performance catalysts for alcohol oxidation on account of their superior thermal stability, electrical conductivity and large specific surface area. Although extensive efforts have been devoted to the preparation of 3D Pd-based catalysts with superior activity and stability, designing a simple, effective and eco-friendly method remains a challenge. Herein, we developed a facile one-step coreduction strategy to synthesize a series of 3D surface-wrinkled PdAu nanospheres (NSs) with tunable Pd/Au atomic ratios and found a universal method to prepare surface-wrinkled PdM (M = Au, Pt, Cu and Pb) NSs. Benefiting from the function of the surfactant cetyltrimethylammonium chloride (CTAC), the synthesized PdAu NSs with different composition possess abundant surface wrinkles, which is beneficial for exposing more electroactive centers. Attributed to the unique geometric morphology and optimized atomic ratio, the PdAu-2 NSs exhibited an optimal mass activity (MA) of 8103 mA mg-1 and 5113 mA mg-1 for the ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), which was 6.1 and 4.1 times that of commercial Pd/C, respectively. Moreover, the PdAu-2 NSs exhibited superb stability after long-term current-time (i-t) and cyclic voltammetry (CV) tests of the EGOR and EOR. This work not only provides new avenues to engineer PdAu NSs with enhanced electrocatalytic performance but also offers guidance for extending to more 3D PdM (M = other metals) NSs with novel morphology applied to fuel cell fields.

16.
ACS Nano ; 17(14): 13659-13671, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37418375

RESUMO

Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.

17.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375168

RESUMO

Today, finding low-cost electro-catalysts for methanol and ethanol oxidation with high performance and stability is one of the new research topics. A nanocatalyst based on metal oxides in the form of MnMoO4 was synthesized by a hydrothermal method for methanol (MOR) and ethanol (EOR) oxidation reactions. Adding reduced graphene oxide (rGO) to the catalyst structure improved the electrocatalytic activity of MnMoO4 for the oxidation processes. The crystal structure and morphology of the MnMoO4 and MnMoO4-rGO nanocatalysts were investigated by physical analyses such as scanning electron microscopy and X-ray diffraction. Their abilities for MOR and EOR processes in an alkaline medium were evaluated by performing electrochemical tests such as cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. MnMoO4-rGO showed oxidation current densities of 60.59 and 25.39 mA/cm2 and peak potentials of 0.62 and 0.67 V in MOR and EOR processes (at a scan rate of 40 mV/s), respectively. Moreover, stabilities of 91.7% in MOR and 88.6% in EOR processes were obtained from the chronoamperometry analysis within 6 h. All these features make MnMoO4-rGO a promising electrochemical catalyst for the oxidation of alcohols.

18.
ACS Appl Mater Interfaces ; 15(22): 27253-27263, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216444

RESUMO

Electrocatalytic efficiency and stability have emerged as critical issues in the ethanol oxidation reaction (EOR) of direct ethanol fuel cells. In this paper, Pd/Co1Fe3-LDH/NF as an electrocatalyst for EOR was prepared by a two-step synthetic strategy. Metal-oxygen bonds formed between Pd nanoparticles and Co1Fe3-LDH/NF guaranteed structural stability and adequate surface-active site exposure. More importantly, the charge transfer of the formed Pd-O-Co(Fe) bridge could effectively modulate the electrical structure of hybrids, improving the facilitated absorption of OH- radicals and oxidation of COads. Benefiting from the interfacial interaction, exposed active sites, and structural stability, the observed specific activity for Pd/Co1Fe3-LDH/NF (17.46 mA cm-2) was 97 and 73 times higher than those of commercial Pd/C (20%) (0.18 mA cm-2) and Pt/C (20%) (0.24 mA cm-2), respectively. Besides, the jf/jr ratio representing the resistance to catalyst poisoning was 1.92 in the Pd/Co1Fe3-LDH/NF catalytic system. These results provide insights into optimizing the electronic interaction between metals and the support of electrocatalysts for EOR.

19.
Micromachines (Basel) ; 14(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37241581

RESUMO

Direct ethanol fuel cells (DEFCs) need newly designed novel affordable catalysts for commercialization. Additionally, unlike bimetallic systems, trimetallic catalytic systems are not extensively investigated in terms of their catalytic potential toward redox reactions in fuel cells. Furthermore, the Rh potential to break the ethanol rigid C-C bond at low applied potentials, and therefore enhance the DEFC efficiency and CO2 yield, is controversial amongst researchers. In this work, two PdRhNi/C, Pd/C, Rh/C and Ni/C electrocatalysts are synthesized via a one-step impregnation process at ambient pressure and temperature. The catalysts are then applied for ethanol electrooxidation reaction (EOR). Electrochemical evaluation is performed using cyclic voltammetry (CV) and chronoamperometry (CA). Physiochemical characterization is pursued using X-ray diffraction (XRD), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Unlike Pd/C, the prepared Rh/C and Ni/C do not show any activity for (EOR). The followed protocol produces alloyed dispersed PdRhNi nanoparticles of 3 nm in size. However, the PdRhNi/C samples underperform the monometallic Pd/C, even though the Ni or Rh individual addition to it enhances its activity, as reported in the literature herein. The exact reasons for the low PdRhNi performance are not fully understood. However, a reasonable reference can be given about the lower Pd surface coverage on both PdRhNi samples according to the XPS and EDX results. Furthermore, adding both Rh and Ni to Pd exercises compressive strain on the Pd lattice, noted by the PdRhNi XRD peak shift to higher angles.

20.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252989

RESUMO

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA