Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Brain Topogr ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722465

RESUMO

This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.

2.
Neuropsychologia ; 199: 108906, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38740180

RESUMO

OBJECTIVE: The goal of this study was to use independent component analysis (ICA) of high-density electroencephalography (EEG) to investigate whether differences in audio-motor neural oscillations are related to nonword syllable repetition accuracy in a group of adults who stutter compared to typically fluent speakers. METHODS: EEG was recorded using 128 channels from 23 typically fluent speakers and 23 adults who stutter matched for age, sex, and handedness. EEG was recorded during delayed, 2 and 4 bilabial nonword syllable repetition conditions. Scalp-topography, dipole source estimates, and power spectral density (PSD) were computed for each independent component (IC) and used to cluster similar ICs across participants. Event-related spectral perturbations (ERSPs) were computed for each IC cluster to examine changes over time in the repetition conditions and to examine how dynamic changes in ERSPs are related to syllable repetition accuracy. RESULTS: Findings indicated significantly lower accuracy on a measure of percentage correct trials in the AWS group and for a normalized measure of syllable load performance across conditions. Analysis of ERSPs revealed significantly lower alpha/beta ERD in left and right µ ICs and in left and right posterior temporal lobe α ICs in AWS compared to TFS (CC p < 0.05). Pearson correlations with %CT for frequency across time showed strong relationships with accuracy (FWE<0.05) during maintenance in the TFS group and during execution in the AWS group. CONCLUSIONS: Findings implicate lower alpha/beta ERD (8-30 Hz) during syllable encoding over posterior temporal ICs and execution in left temporal/sensorimotor components. Strong correlations with accuracy and interindividual differences in ∼6-8 Hz ERSPs during execution implicate differences in motor and auditory-sensory monitoring during syllable sequence execution in AWS.


Assuntos
Eletroencefalografia , Gagueira , Humanos , Masculino , Feminino , Adulto , Gagueira/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade
3.
Mult Scler Relat Disord ; 86: 105601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604003

RESUMO

BACKGROUND: Motor preparation and execution can be impaired in patients with multiple sclerosis (pwMS). These neural processes can be assessed using electroencephalography (EEG). During a self-paced movement, EEG signal amplitude decreases before movement (event-related desynchronization, ERD) and increases after movement (event-related synchronization, ERS). OBJECTIVE: To reappraise ERD/ERS changes in pwMS compared to healthy controls (HC). METHODS: This single-center study included 13 pwMS and 10 sex/age-matched HC. 60-channel EEG was recorded during two self-paced movements of the right hand: a simple index finger extension task and a more complex finger tapping task. Clinical variables included MS type, sex, age, disease duration, disability, grip strength, fatigue and attentional performance. EEG variables included ERD and ERS onset latency, duration, and amplitude determined using two methods of signal analyses (based on visual or automated determination) in the alpha and beta frequency bands in five cortical regions: right and left frontocentral and centroparietal regions and a midline region. Neuroimaging variables included the volumes of four deep brain structures (thalamus, putamen, pallidum and caudate nucleus) and the relative lesion load. RESULTS: ERD/ERS changes in pwMS compared to HC were observed only in the beta band. In pwMS, beta-ERD had a delayed onset in the midline and right parietocentral regions and a shortened duration or increased amplitude in the parietocentral region; beta-ERS had a shorter duration, delayed onset, or reduced amplitude in the left parieto/frontocentral region. In addition, pwMS with a more delayed beta-ERD in the midline region had less impaired executive functions but increased caudate nuclei volume, while pwMS with a more delayed beta-ERS in the parietocentral region contralateral to the movement had less fatigue but increased thalami volume. CONCLUSION: This study confirms an alteration of movement preparation and execution in pwMS, mainly characterized by a delayed cortical activation (ERD) and a delayed and reduced post-movement inhibition (ERS) in the beta band. Compensatory mechanisms could be involved in these changes, associating more preserved clinical performance and overactivation of deep brain structures.


Assuntos
Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/diagnóstico por imagem , Sincronização Cortical/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Desempenho Psicomotor/fisiologia
4.
Brain Sci ; 14(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248289

RESUMO

Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.

5.
Clin Neurophysiol ; 157: 25-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039924

RESUMO

OBJECTIVE: Our objective was to clarify the primary sensorimotor (SM1) cortex excitatory and inhibitory alterations in hemiplegic (HP) and diplegic (DP) cerebral palsy (CP) by quantifying SM1 cortex beta power suppression and rebound with magnetoencephalography (MEG). METHODS: MEG was recorded from 16 HP and 12 DP adolescents, and their 32 healthy controls during proprioceptive stimulation of the index fingers evoked by a movement actuator. The related beta power changes were computed with Temporal Spectral Evolution (TSE). Peak strengths of beta suppression and rebound were determined from representative channels over the SM1 cortex. RESULTS: Beta suppression was stronger contralateral to the stimulus and rebound was weaker ipsilateral to the stimulation in DP compared to controls. Beta modulation strengths did not differ significantly between HP and the control group. CONCLUSIONS: The emphasized beta suppression in DP suggests less efficient proprioceptive processing in the SM1 contralateral to the stimulation. Their weak rebound further indicates reduced intra- and/or interhemispheric cortical inhibition, which is a potential neuronal mechanism for their bilateral motor impairments. SIGNIFICANCE: The excitation-inhibition balance of the SM1 cortex related to proprioception is impaired in diplegic CP. Therefore, the cortical and behavioral proprioceptive deficits should be better diagnosed and considered to better target individualized effective rehabilitation in CP.


Assuntos
Paralisia Cerebral , Córtex Sensório-Motor , Adolescente , Humanos , Mãos , Magnetoencefalografia , Movimento/fisiologia , Propriocepção , Córtex Somatossensorial/fisiologia
6.
Cortex ; 169: 203-219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948875

RESUMO

Color has meaning in particular contexts, and the meaning of color can impact behavioral performance. For example, the meaning of color about traffic rules (blue/green and red mean "go" and "stop" respectively) influences reaction times (RTs) to signals. Specifically, in a Go/No-go task, RTs have been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). However, the neurophysiological background of this phenomenon has not been fully understood. The purpose of this study was to investigate the brain oscillatory activity associated with the effect of meaning of color on RTs in the Go/No-go task. Twenty participants performed a Blue simple reaction task, a Red simple reaction task, a Blue Go/Red No-go task, and a Red Go/Blue No-go task. We recorded responses to signals and electroencephalogram (EEG) during the tasks and evaluated RTs and changes in spectral power over time, referred to as event-related synchronization (ERS) and event-related desynchronization (ERD). The behavioral results were similar to previous studies. The EEG results showed that frontal beta ERD and theta ERS were greater when signals were presented in blue than red color in both simple reaction and Go/No-go tasks. In addition, the onset of theta ERS was delayed in the Red Go than Blue Go trial in the Go/No-go task. The enhanced beta ERD may indicate that blue signals facilitate motor response, and the delayed onset of theta ERS may indicate the delayed onset of cognitive process when responding to red signals as compared to blue signals in the Go/No-go task. Thus, this delay in cognitive process can be involved in the slow response in the Red Go/Blue No-go task.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Tempo de Reação/fisiologia , Encéfalo/fisiologia , Sincronização Cortical/fisiologia
7.
Neuroimage ; 284: 120444, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926216

RESUMO

Previous work showed that movements are accompanied by modulation of electroencephalographic (EEG) activity in both beta (13-30 Hz) and gamma (>30 Hz) ranges. The amplitude of beta event-related synchronization (ERS) is not linked to movement characteristics, but progressively increases with motor practice, returning to baseline after a period of rest. Conversely, movement-related gamma ERS amplitude is proportional to movement distance and velocity. Here, high-density EEG was recorded in 51 healthy subjects to investigate whether i) three-hour practice in two learning tasks, one with a motor component and one without, affects gamma ERS amplitude and connectivity during a motor reaching test, and ii) 90-minutes of either sleep or quiet rest have an effect on gamma oscillatory activity. We found that, while gamma ERS was appropriately scaled to the target extent at all testing points, its amplitude decreased after practice, independently of the type of interposed learning, and after both quiet wake and nap, with partial correlations with subjective fatigue scores. During movement execution, connectivity patterns within fronto-parieto-occipital electrodes, over areas associated with attentional networks, decreased after both practice and after 90-minute rest. While confirming the prokinetic nature of movement-related gamma ERS, these findings demonstrated the preservation of gamma ERS scaling to movement velocity with practice, despite constant amplitude reduction. We thus speculate that such decreases, differently from the practice-related increases of beta ERS, are related to reduced attention or working memory mechanisms due to fatigue or a switch of strategy toward automatization of movement execution and do not specifically reflect plasticity phenomena.


Assuntos
Eletroencefalografia , Movimento , Humanos , Aprendizagem
8.
Psychophysiology ; 60(12): e14403, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578353

RESUMO

Symptoms in patients with obsessive-compulsive disorder (OCD) are associated with impairment in cognitive control, attention, and action inhibition. We investigated OCD group differences relative to healthy subjects in terms of event-related alpha and beta range synchronization (ERS) and desynchronization (ERD) during a visually cued Go/NoGo task. Subjects were 62 OCD patients and 296 healthy controls (HC). The OCD group in comparison with HC, showed a changed value of alpha/beta oscillatory power over the central cortex, in particular, an increase in the alpha/beta ERD over the central-parietal cortex during the interstimulus interval (Cue condition) as well as changes in the postmovement beta synchronization topography and frequency. Over the frontal cortex, the OCD group showed an increase in magnitude of the beta ERS in NoGo condition. Within the parietal-occipital ERS/ERD modulations, the OCD group showed an increase in the alpha/beta ERD over the parietal cortex after the presentation of the visual stimuli as well as a decrease in the beta ERD over the occipital cortex after the presentation of the Cue and Go stimuli. The specific properties in the ERS/ERD patterns observed in the OCD group may reflect high involvement of the frontal and central cortex in action preparation and action inhibition processes and, possibly, in maintaining the motor program, which might be a result of the dysfunction of the cortico-striato-thalamo-cortical circuits involving prefrontal cortex. The data about enhanced involvement of the parietal cortex in the evaluation of the visual stimuli are in line with the assumption about overfocused attention in OCD.


Assuntos
Sincronização Cortical , Transtorno Obsessivo-Compulsivo , Humanos , Sincronização Cortical/fisiologia , Lobo Occipital , Córtex Pré-Frontal , Lobo Parietal , Eletroencefalografia
9.
Neuroscience ; 517: 50-60, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907432

RESUMO

Transcranial static magnetic stimulation (tSMS) is known to influence behavioral and neural activities. However, although the left and right dorsolateral prefrontal cortex (DLPFC) are associated with different cognitive functions, there remains a lack of knowledge on a difference in the effects of tSMS on cognitive performance and related brain activity between left and right DLPFC stimulations. To address this knowledge gap, we examined how differently tSMS over the left and right DLPFC altered working memory performance and electroencephalographic oscillatory responses using a 2-back task, in which subjects monitor a sequence of stimuli and decide whether a presented stimulus matches the stimulus presented two trials previously. Fourteen healthy adults (five females) performed the 2-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after three different stimulation conditions: tSMS over the left DLPFC, tSMS over the right DLPFC, and sham stimulation. Our preliminary results revealed that while tSMS over the left and right DLPFC impaired working memory performance to a similar extent, the impacts of tSMS on brain oscillatory responses were different between the left and right DLPFC stimulations. Specifically, tSMS over the left DLPFC increased the event-related synchronization in beta band whereas tSMS over the right DLPFC did not show such an effect. These findings support evidence that the left and right DLPFC play different roles in working memory and suggest that the neural mechanism underlying the impairment of working memory by tSMS can be different between left and right DLPFC stimulations.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal Dorsolateral , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Encéfalo , Fenômenos Magnéticos , Estimulação Transcraniana por Corrente Contínua/métodos
10.
Cereb Cortex ; 33(12): 7678-7687, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920227

RESUMO

Wind-up is a nociceptive-specific phenomenon in which pain sensations are facilitated, in a frequency-dependent manner, by the repeated application of noxious stimuli of constant intensity, with invariant tactile sensations. Thus, cortical activities during wind-up could be an alteration associated with pain potentiation. We aimed to investigate somatosensory-evoked cortical responses and induced brain oscillations during wind-up by recording magnetoencephalograms. Wind-up was produced by the application of 11 consecutive electrical stimuli to the sural nerve, repeated at a frequency of 1 Hz without varying the intensity. The augmentation of flexion reflexes and pain rating scores were measured simultaneously as an index of wind-up. In the time-frequency analyses, the γ-band late event-related synchronization and the ß-band event-related desynchronization were observed in the primary somatosensory region and the bilateral operculo-insular region, respectively. Repetitive exposure to the stimuli enhanced these activities, along with an increase in the flexion reflex magnitude. The evoked cortical activity reflected novelty, with no alteration to these repetitive stimuli. Observed oscillations enhanced by repetitive stimulation at a constant intensity could reflect a pain mechanism associated with wind-up.


Assuntos
Magnetoencefalografia , Dor , Humanos , Reflexo/fisiologia , Medição da Dor , Estimulação Elétrica
11.
J Neurophysiol ; 129(1): 262-270, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541610

RESUMO

Painful contact heat and laser stimulation offer an avenue to characterize nociceptive pathways involved in acute pain processing, by way of evoked potentials. Direct comparisons of radiant laser and contact heat are limited, particularly in context of examining time-frequency responses to stimulation. This is important in light of recent evidence to suggest that gamma band oscillations (GBOs) represent a functionally heterogeneous measure of pain. The purpose of the current study was to investigate differences in GBOs generated in response to laser and contact heat stimulation of the nondominant forearm. Following intensity matching to pain ratings, evoked electroencephalography (EEG) responses to laser and contact heat stimulation were examined in the time-frequency domain in the same participants (19 healthy adults) across two sessions. At ∼200 ms, both contact heat and laser stimulation resulted in significant, group-level event-related synchronization (ERS) in the low gamma band (i.e., 30-60 Hz) in central electrode locations (Cc, Cz, Ci). Laser stimulation also generated ERS in the 60-100 Hz range (i.e., high gamma), at ∼200 ms, while contact heat led to a significant period of desynchronization in the high gamma range between 400 and 600 ms. Both contact heat and laser GBOs were stronger on the central electrodes contralateral to the stimulated forearm, indicative of primary somatosensory cortex involvement. Based on our findings, and taken in conjunction with previous studies, laser and contact heat stimulation generate characteristically different responses in the brain, with only the former leading to high-frequency GBOs characteristic of painful stimuli.NEW & NOTEWORTHY Despite matching pain perception between noxious laser and contact heat stimuli, we report notable differences in gamma band oscillations (GBO), measured via electroencephalography. GBOs produced following contact heat more closely resembled that of nonnoxious stimuli, while GBOs following laser stimuli were in line with previous reports. Taken together, laser and contact heat stimulation generate characteristically different responses in the brain, with only the former leading to high-frequency GBOs characteristic of painful stimuli.


Assuntos
Dor Aguda , Nociceptividade , Adulto , Humanos , Temperatura Alta , Percepção da Dor/fisiologia , Eletroencefalografia , Lasers
12.
Audit Percept Cogn ; 6(3-4): 289-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665905

RESUMO

Introduction: Adverse listening conditions can drive increased mental effort during listening. Neuromagnetic alpha oscillations (8-13 Hz) may index this listening effort, but inconsistencies regarding the direction of the relationship are abundant. We performed source analyses on high-density EEG data collected during a speech-on-speech listening task to address the possibility that opposing alpha power relationships among alpha producing brain sources drive this inconsistency. Methods: Listeners (N=20) heard two simultaneously presented sentences of the form: Ready go to now. They either reported the color/number pair of a "Baron" call sign sentence (active: high effort), or ignored the stimuli (passive: low effort). Independent component analysis (ICA) was used to segregate temporally distinct sources in the EEG. Results: Analysis of independent components (ICs) revealed simultaneous alpha enhancements (e.g., for somatomotor mu ICs) and suppressions (e.g., for left temporal ICs) for different brain sources. The active condition exhibited stronger enhancement for left somatomotor mu rhythm ICs, but stronger suppression for central occipital ICs. Discussion: This study shows both alpha enhancement and suppression to be associated with increases in listening effort. Literature inconsistencies could partially relate to some source activities overwhelming others in scalp recordings.

13.
Neurophysiol Clin ; 52(6): 413-426, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36347747

RESUMO

OBJECTIVE: The study aimed to examine the clinical and neurophysiological predictors of motor event-related desynchronization (ERD) and synchronization (ERS) in patients with chronic pain due to knee osteoarthritis (KOA). METHODS: We performed a cross-sectional analysis of our cohort study (DEFINE cohort), KOA arm, with 71 patients, including demographic, functionality, genetic and neurophysiological measures. ERD/ERS was evaluated during hand motor tasks (motor execution, active and passive observation, and imagery). Multivariate regression models were used to explore predictors of ERD/ERS. RESULTS: Although we found an altered ERD/ERS pattern during motor execution and active observation, the ERS pattern could only be clearly differentiated after passive observation.`. We found no predictors of ERD (excitatory biomarker). For ERS (inhibitory biomarker), our results showed that the main predictors differ across EEG frequency bands. Considering pain measures, we found that visual analogue scale (VAS, right knee) and chronicity of pain negatively predict low beta and high beta ERS, respectively. Pain threshold was positively correlated with alpha ERS, while 36-Item Short Form Survey (SF-36) emotional domain positively predicted beta ERS. Regarding transcranial magnetic stimulation (TMS) markers, intracortical inhibition (ICF) negatively predicted beta and low beta ERS, and left hemisphere cortical silent period (CSP) negatively predicted low beta ERS. CONCLUSION: Considering that higher power of ERS indicates a stronger cortical organization and inhibitory drive, our results show that limitation of activities due to emotional factors, lower pain threshold, higher VAS pain, and longer duration of pain are associated with lower ERS power (in alpha and beta frequencies), thus indicating a lower inhibitory drive. In the same direction, a lower inhibitory drive as indicated by higher ERS power is associated with higher ICF amplitude. Although there was a negative association between ERS and CSP, this may indicate that ICF values are adjusting CSP results. Our findings support the idea that a less organized cortical response as indicated by changes to the ERS is associated with higher pain correlates in subjects with KOA.


Assuntos
Córtex Motor , Osteoartrite do Joelho , Humanos , Sincronização Cortical/fisiologia , Córtex Motor/fisiologia , Eletroencefalografia , Medição da Dor , Osteoartrite do Joelho/complicações , Estudos de Coortes , Estudos Transversais , Biomarcadores , Dor
14.
Brain Sci ; 12(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35625033

RESUMO

Rhythmic passive movements are often used during rehabilitation to improve physical functions. Previous studies have explored oscillatory activities in the sensorimotor cortex during active movements; however, the relationship between movement rhythms and oscillatory activities during passive movements has not been substantially tested. Therefore, we aimed to quantitatively identify changes in cortical oscillations during rhythmic passive movements. Twenty healthy young adults participated in our study. We placed electroencephalography electrodes over a nine-position grid; the center was oriented on the transcranial magnetic stimulation hotspot of the biceps brachii muscle. Passive movements included elbow flexion and extension; the participants were instructed to perform rhythmic elbow flexion and extension in response to the blinking of 0.67 Hz light-emitting diode lamps. The coherence between high-beta and low-gamma oscillations near the hotspot of the biceps brachii muscle and passive movement rhythms was higher than that between alpha oscillation and passive movement rhythm. These results imply that alpha, beta, and gamma oscillations of the primary motor cortex are differently related to passive movement rhythm.

15.
Geroscience ; 44(4): 2291-2303, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35553346

RESUMO

Investigating effects of aging on neurophysiological mechanisms underlying working memory provides a better understanding of potential targets for brain intervention to prevent cognitive decline. Theta-gamma coupling (TGC) indexes the ability to order information processed during working memory tasks. Frontal theta event-related synchronization (ERS) and parietal alpha event-related desynchronization (ERD) index cognitive control and interference inhibition, respectively. Relative contributions of TGC, theta ERS, and alpha ERD in relation to stimulus presentation are not characterized. Further, differential effect of normal aging on pre- or post-stimulus processes is unknown. Electroencephalography was recorded in 66 younger and 41 older healthy participants while performing 3-back working memory task. We assessed relationships between 3-back task performance and each of post-stimulus TGC, pre-stimulus parietal alpha ERD, and pre-stimulus frontal theta ERS in each age group. While older adults performed worse on 3-back task than younger adults, TGC, alpha ERD, or theta ERS did not differ between the two groups. TGC was positively associated with 3-back performance in both age groups; pre-stimulus alpha ERD was associated with performance among younger adults; and pre-stimulus theta ERS was not associated with performance in either group. Our findings suggest that both pre-stimulus interference inhibition and post-stimulus ordering of information are important for working memory in younger adults. In contrast, performance in older adults appears to depend only on post-stimulus ordering of information. These specific contributions of neurophysiological resources may explain the poorer performance of older adults and suggest different targets to enhance working memory in age groups.


Assuntos
Disfunção Cognitiva , Memória de Curto Prazo , Humanos , Idoso , Memória de Curto Prazo/fisiologia , Eletroencefalografia , Envelhecimento/fisiologia , Cognição/fisiologia
16.
Brain Lang ; 230: 105127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605312

RESUMO

Languages differ in how they mark the dependencies between verbs and arguments, e.g., by case. An eye tracking and EEG picture description study examined the influence of case marking on the time course of sentence planning in Basque and Swiss German. While German assigns an unmarked (nominative) case to subjects, Basque specifically marks agent arguments through ergative case. Fixations to agents and event-related synchronization (ERS) in the theta and alpha frequency bands, as well as desynchronization (ERD) in the alpha and beta bands revealed multiple effects of case marking on the time course of early sentence planning. Speakers decided on case marking under planning early when preparing sentences with ergative-marked agents in Basque, whereas sentences with unmarked agents allowed delaying structural commitment across languages. These findings support hierarchically incremental accounts of sentence planning and highlight how cross-linguistic differences shape the neural dynamics underpinning language use.


Assuntos
Compreensão , Idioma , Humanos , Linguística
17.
Front Neurol ; 13: 819603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418932

RESUMO

Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.

18.
Front Neurosci ; 16: 836703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281507

RESUMO

Modulation of gamma oscillations recorded from the human motor cortex and basal ganglia appears to play a key role in movement execution. However, there are still major questions to be answered about the specific role of cortical gamma activity in both the planning and execution of movement features such as the scaling of peak velocity and movement time. In this study, we characterized movement-related gamma oscillatory dynamics and its relationship with kinematic parameters based on 256-channels EEG recordings in 64 healthy subjects while performing fast and uncorrected reaching movements to targets located at three distances. In keeping with previous studies, we found that movement-related gamma synchronization occurred during movement execution. As a new finding, we showed that gamma synchronization occurred also before movement onset, with planning and execution phases involving different gamma peak frequencies and topographies. Importantly, the amplitude of gamma synchronization in both planning and execution increased with target distance and predicted peak velocity and movement time. Additional analysis of phase coherence revealed a gamma-coordinated long-range network involving occipital, frontal and central regions during movement execution that was positively related to kinematic features. This is the first evidence in humans supporting the notion that gamma synchronization amplitude and phase coherence pattern can reliably predict peak velocity amplitude and movement time. Therefore, these findings suggest that cortical gamma oscillations have a crucial role for the selection, implementation and control of the appropriate kinematic parameters of goal-directed reaching movements.

19.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161683

RESUMO

Tinnitus is an auditory condition that causes humans to hear a sound anytime, anywhere. Chronic and refractory tinnitus is caused by an over synchronization of neurons. Sound has been applied as an alternative treatment to resynchronize neuronal activity. To date, various acoustic therapies have been proposed to treat tinnitus. However, the effect is not yet well understood. Therefore, the objective of this study is to establish an objective methodology using electroencephalography (EEG) signals to measure changes in attentional processes in patients with tinnitus treated with auditory discrimination therapy (ADT). To this aim, first, event-related (de-) synchronization (ERD/ERS) responses were mapped to extract the levels of synchronization related to the auditory recognition event. Second, the deep representations of the scalograms were extracted using a previously trained Convolutional Neural Network (CNN) architecture (MobileNet v2). Third, the deep spectrum features corresponding to the study datasets were analyzed to investigate performance in terms of attention and memory changes. The results proved strong evidence of the feasibility of ADT to treat tinnitus, which is possibly due to attentional redirection.


Assuntos
Zumbido , Estimulação Acústica , Atenção , Percepção Auditiva , Eletroencefalografia , Humanos , Zumbido/terapia
20.
J Neurophysiol ; 127(2): 559-570, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044809

RESUMO

The Rolandic beta rhythm, at ∼20 Hz, is generated in the somatosensory and motor cortices and is modulated by motor activity and sensory stimuli, causing a short lasting suppression that is followed by a rebound of the beta rhythm. The rebound reflects inhibitory changes in the primary sensorimotor (SMI) cortex, and thus it has been used as a biomarker to follow the recovery of patients with acute stroke. The longitudinal stability of beta rhythm modulation is a prerequisite for its use in long-term follow-ups. We quantified the reproducibility of beta rhythm modulation in healthy subjects in a 1-year-longitudinal study both for MEG and EEG at T0, 1 month (T1-month, n = 8) and 1 year (T1-year, n = 19). The beta rhythm (13-25 Hz) was modulated by fixed tactile and proprioceptive stimulations of the index fingers. The relative peak strengths of beta suppression and rebound did not differ significantly between the sessions, and intersession reproducibility was good or excellent according to intraclass correlation-coefficient values (0.70-0.96) both in MEG and EEG. Our results indicate that the beta rhythm modulation to tactile and proprioceptive stimulation is well reproducible within 1 year. These results support the use of beta modulation as a biomarker in long-term follow-up studies, e.g., to quantify the functional state of the SMI cortex during rehabilitation and drug interventions in various neurological impairments.NEW & NOTEWORTHY The present study demonstrates that beta rhythm modulation is highly reproducible in a group of healthy subjects within a year. Hence, it can be reliably used as a biomarker in longitudinal follow-up studies in different neurological patient groups to reflect changes in the functional state of the sensorimotor cortex.


Assuntos
Ritmo beta/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Magnetoencefalografia , Córtex Motor/fisiologia , Propriocepção/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Eletroencefalografia/normas , Feminino , Humanos , Estudos Longitudinais , Magnetoencefalografia/normas , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA