Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Water Res ; 268(Pt A): 122604, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39426046

RESUMO

A currently increasing interest in water reuse is met with the concern about water quality. Excitation-emission matrix (EEM) measurements, which are widely implemented in laboratory analysis, emerge as a promising tool for characterizing both microbial and chemical water qualities in the online monitoring of water reuse systems. However, the robustness of EEM measurements has been rarely validated in actual online monitoring campaigns where predictions are made for new samples independent of those used to establish EEM analysis models, including the popular parallel factor analysis (PARAFAC). In this study, two strategies of conducting PARAFAC were examined for the online monitoring of a greywater reuse system using two EEM datasets from two monitoring periods for model establishment and model testing respectively. With the first strategy that is commonly used in laboratory analyses, an entire EEM datasets from one period was used to establish one PARAFAC model, and the maximum fluorescence intensity (Fmax) of a PARAFAC component was used to predict total cell count (TCC) in another period. However, under the disturbance of dissolved organic matter (DOM) fluorescence in the background, Fmax gave unreliable predictions in model testing. To address this problem, a second and novel strategy was proposed using an EEM clustering and PARAFAC component shift mining technique. This unsupervised algorithm, named K-PARAFACs, automatically groups EEMs into K clusters and on each cluster establishes a cluster-specific PARAFAC model with distinct component shapes. With this method, multiple PARAFAC models were established on one EEM dataset, with each model representing samples with certain TCC ranges and DOM compositions. In model testing, these cluster-specific PARAFAC models served as EEM classifiers. A new sample was not characterized by Fmax but by the cluster-specific model that best fitted the EEM signal of the sample with the least numerical error. The proposed strategy demonstrates its robustness by successfully predicting the TCC trend in test datasets. Our findings suggest that K-PARAFACs is a promising tool that enables robust qualitative monitoring of water reuse systems with background DOM variability.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124785, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39008929

RESUMO

Measuring the chemical composition in soybeans is time-consuming and laborious, and even simple near-infrared sensors generally require the creation of calibration curves before application. In this study, a new screening method for soybeans without calibration curves was investigated by combining the excitation emission matrix (EEM) and dimensionality reduction analysis. The EEMs of 34 soybean samples were measured, and representative chemical contents including crude protein, crude oil and isoflavone contents were measured by chemical analysis. Two methods of dimensionality reduction: principal component analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) were applied on the EEM data to obtain two-dimensional plots, which were divided into two regions with large or small amount of each chemical components. To classify the large or small levels of each of the chemical composition, machine learning classification models were constructed on the two-dimensional plots after dimensionality reduction. As a result, the classification accuracy was higher in t-SNE than in the combinations of PC1 and PC2 from PCA. Furthermore, in t-SNE, the classification accuracy reached over 90% for all the chemical components. From these results, t-SNE dimensionality reduction on the soybean EEM has the potential for easy and accurate screening of soybeans especially based on isoflavone contents.


Assuntos
Glycine max , Análise de Componente Principal , Glycine max/química , Glycine max/classificação , Isoflavonas/análise , Isoflavonas/química , Aprendizado de Máquina , Proteínas de Soja/análise , Proteínas de Soja/classificação , Proteínas de Soja/química
3.
Environ Sci Pollut Res Int ; 31(36): 49372-49392, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39069589

RESUMO

The optical characteristics of colored dissolved organic matter (CDOM) serve as a convenient tool for evaluating coastal processes, e.g., river runoff, anthropogenic inputs, primary production, and bacterial/photochemical processes. We conducted a study on the seasonal and spatial variability of absorbance and fluorescence characteristics of CDOM and nutrients in the coastal waters near the Gauthami estuary of River Godavari, the largest peninsular river of India, for a year. The surface aCDOM(350) showed a significant inverse relation with salinity in the coastal region, indicating a conservative mixing of marine and terrestrial end members. The aCDOM(350) was not conservative in the offshore (100 m isobath) waters due to enrichment by secondary sources. Seasonal variability in optical properties indicated diverse sources for CDOM, as revealed by principal component analysis. The excitation-emission matrix (EEM) spectra followed by parallel factor analysis (EEM-PARAFAC) revealed four distinct fluorophores. The tyrosine (B) fluorophore showed a predominant increase in the post-monsoon season (October to January), while tryptophan (T) was relatively more enriched, coincident with nutrient enrichment and transparency increase during the early monsoon phase (July). The biological index (BIX), which reflects recent photosynthetic activity, also displayed relatively higher values during the early monsoon. The humic fluorophores A and M, and humification index (HIX) were relatively enriched during the later phase of monsoon (July-October). HIX was > 4 in a few samples of the offshore region (100-m isobath) and indicated a probable contamination from drill-mud (bentonite) used in hydrocarbon exploration. During the monsoon, the relationship between T and B with CDOM was not evident due to the masking of B fluorescence in intact protein. However, during the post-monsoon (POM) and pre-monsoon (PRM) periods, this masking effect was not observed, likely due to protein degradation via bacterial and photochemical processes, respectively. Temporal variability in nutrients indicated that high ammonium levels were produced during POM (OM bacterial degradation), and high nitrite levels were observed during PRM (due to primary production). This study provides foundational insights into the use of CDOM for understanding the impact of diverse environmental, river discharge, and anthropogenic factors on coastal ecosystems.


Assuntos
Monitoramento Ambiental , Rios , Estações do Ano , Rios/química , Índia , Baías , Salinidade , Poluentes Químicos da Água/análise
4.
Chemosphere ; 354: 141717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490617

RESUMO

Haloacetonitriles (HANs) are unregulated disinfection by-products that are more toxic than regulated species. Therefore, efficient decomposition of HAN precursors prior to disinfection is crucial for allaying the potential HAN-induced health risks. This study investigated the key roles of ultraviolet-activated persulfate (UV/PS) treatment in alleviating HAN formation. The effects of UV/PS treatment were evaluated by correlating with the characteristics of organic matter in surface water and comparing with conventional UV/H2O2 treatment. Upon irradiating raw water samples and a Suwannee River humic acid solution spiked with 10 mM PS or H2O2 with 254 nm UV light, UV/PS treatment was found to be more potent than UV/H2O2 in mitigating the HAN production and degrading organic substances; moreover, UV/PS treatment effectively decreased the dissolved organic nitrogen (DON) content. In contrast, UV/H2O2 treatment did not induce any noticeable reduction in DON level. Furthermore, both UV/PS and UV/H2O2 treatments reduced the dichloroacetonitrile (DCAN) formation potential (FP), leading to strong correlations with the degradation of aromatic and humic-acid-like compounds. Notably, UV/PS treatment efficiently decreased the FP of bromochloroacetonitrile (BCAN) and dramatically reduced that of dibromoacetonitrile (DBAN) after a sharp increase; however, UV/H2O2 treatment gradually increased the DBAN-FP. Bromide was activated by sulfate radicals during UV/PS treatment, negatively correlating with the BCAN-FP and DBAN-FP, indicating that the formation of reactive bromine species increased the DBAN-FP; however, excessive oxidation possibly led to the recovery of inorganic bromine for decreasing the BCAN-FP and DBAN-FP. Additionally, UV/PS treatment effectively suppressed toxicity owing to its high reduction rate for brominated HANs; in contrast, UV/H2O2 treatment resulted in less significant BCAN and DBAN reductions, leading to minimal net reduction in toxicity. Overall, UV/PS treatment was remarkably effective at diminishing the toxicity of brominated HANs, underscoring its potential to mitigate drinking-water-related health risks.


Assuntos
Acetonitrilas , Água Potável , Poluentes Químicos da Água , Purificação da Água , Raios Ultravioleta , Halogenação , Peróxido de Hidrogênio , Purificação da Água/métodos , Bromo , Desinfecção/métodos , Poluentes Químicos da Água/análise
5.
Food Chem ; 448: 139000, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547706

RESUMO

C-Phycocyanin and sugar (C-PC/S) blended agar hydrocolloid was prepared and its rheological, thermo-functional and morphological properties were examined based on the fluorescence excitation-emission matrix profile. Sucrose (40%, w/v) determined as a superior preservative, maintaining the native conformation of C-PC effectively. C-PC/S exhibited enhanced structural integrity with high storage modulus (G') and 86.4% swelling index. FT-IR demonstrated strong intramolecular bonding. TGA revealed that the presence of sucrose prolonged the devolatilization peak up to 325 °C, with a degradation rate of -2.273 mg/min, it the thermal stability. C-PC/S fortified hydrocolloid in ice cream (5.0% w/w), reduced melting rate up to five times. In conclusion, sucrose as a promising enhancer of color stability and structural integrity for C-PC, and this combination effectively improves the functional and rheological properties. Further, the findings exposed the agar hydrocolloid as a potential enhancer of color retention and improved performance for various food and cosmetic products.

6.
Environ Sci Pollut Res Int ; 31(10): 14388-14405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38289550

RESUMO

Dissolved organic matter (DOM) is a pivotal component of the biogeochemical cycles and can combine with metal ions through chelation or complexation. Understanding this process is crucial for tracing metal solubility, mobility, and bioavailability. Fluorescence excitation emission matrix (EEM) and parallel factor analysis (PARAFAC) has emerged as a popular tool in deciphering DOM-metal interactions. In this review, we primarily discuss the advantages of EEM-PARAFAC compared with other algorithms and its main limitations in studying DOM-metal binding, including restrictions in spectral considerations, mathematical assumptions, and experimental procedures, as well as how to overcome these constraints and shortcomings. We summarize the principles of EEM to uncover DOM-metal association, including why fluorescence gets quenched and some potential mechanisms that affect the accuracy of fluorescence quenching. Lastly, we review some significant and innovative research, including the application of 2D-COS in DOM-metal binding analysis, hoping to provide a fresh perspective for possible future hotspots of study. We argue the expansion of EEM applications to a broader range of areas related to natural organic matter. This extension would facilitate our exploration of the mobility and fate of metals in the environment.


Assuntos
Matéria Orgânica Dissolvida , Oligoelementos , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Oligoelementos/análise , Metais , Análise Fatorial
7.
Environ Sci Pollut Res Int ; 30(48): 106687-106697, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853646

RESUMO

The dewatering treatment is an essential process for the treatment and disposal of surplus activated sludge (SAS), and improving sludge dewatering performance is still a challenge and has become a research hotspot in recent years. The oxidation and disintegration of bacterial cells and extracellular polymeric substances (EPS) by active radicals produced by advanced oxidation processes (AOPs) were extremely promising to achieve deep sludge dewatering. This paper systematically studied the efficiency and mechanism of thermally activated persulfate (TAP) oxidation technology to the improvement of SAS dewatering performance. The results showed that the relative filterability (CST0/CST) was increased 2.52 times with 2.0 mmol/g VSS potassium peroxydisulfate (PDS) at 80 °C in 90 min. Under this condition, the Zeta potential of SAS significantly decreased from - 14.8 to - 1.44 mV, while the average particle size (dp50) decreased from 52.981 to 48.259 µm. Thermal treatment disrupted the sludge structure to release large amounts of EPS including polysaccharides and protein. Meanwhile, the results of three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectra showed that the TAP treatment could expedite the disintegration of sludge, facilitating the decrease of total EPS content and conversion of tightly bound EPS (TB-EPS) to loosely bound EPS (LB-EPS) and soluble EPS (S-EPS). The mechanism of TAP process to improve SAS dewatering performance was revealed, which could contribute to breaking the bottleneck of sludge depth dewatering and provide a theoretical and technical basis for its practical application.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Temperatura , Água/química , Oxirredução
8.
Sci Total Environ ; 896: 165149, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385498

RESUMO

An observed decrease in total organic carbon (TOC) and dissolved organic carbon (DOC) concentrations following wastewater disinfection with medium pressure (MP, polychromatic) ultraviolet (UV) irradiation during wet weather flows is investigated. When antecedent rainfall in the previous 7-days was >2 in (5 cm), TOC and DOC concentrations decreased dramatically following MP-UV disinfection. Organic carbon surrogate measurements of biological oxygen demand (BOD), TOC, DOC, turbidity, UVA - 254 nm, SUVA (specific UVA), scanning UV-Visible spectra (200-600 nm), fluorescence excitation-emission matrix (EEM) spectra, and light scattering data are presented for wastewater resource recovery facility (WRRF) influent, secondary effluent (pre-UV-disinfection), and MP-UV-disinfected (final effluent) samples. TOC and DOC in wastewater influent and secondary effluent (i.e., pre-UV disinfection) correlated with antecedent rainfall conditions. The percent TOC and DOC removal through secondary treatment (i.e., from influent to effluent pre-UV) and the percent TOC and DOC removal through MP-UV disinfection (i.e., from effluent pre-UV to effluent post-UV) were compared and the latter approached 90 % through MP-UV disinfection during high antecedent rainfall conditions. Spectroscopy (UV, visible, or fluorescence) was performed on samples after filtration through 0.45 µm filters, i.e., the operationally defined DOC fraction of aquatic carbon. Scanning UV-visible spectra indicated transformation of an unidentified wastewater component into light-scattering entities regardless of antecedent rainfall conditions. The types of organic carbon (diagenetic, biogenic, or anthropogenic) and the significance of wet weather are discussed. An organic carbon contribution via infiltration and inflow was attributed as a source-of-interest in this research.

9.
Chemosphere ; 330: 138770, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094719

RESUMO

Fluorescent dissolved organic matter (FDOM) in surface water has broad implications on water quality research and operations. Solid phase extraction (SPE) is the most widely used technique to extract FDOM. However, fluorescent elution preferences by common solvents and content of quantifiable chromophores in waste fraction remain largely unknown, both quantitatively and qualitatively. In this work, the preferential selection of various types of FDOM captured by and lost from SPE as characterized by the fluorescence excitation-emission matrix (EEM) were investigated. Three elution solvents (methanol, acetone, and dichloromethane) were adopted to elute the DOM that was enriched on a typical SPE sorbent. Results revealed that high polarity (methanol) and medium polarity (acetone) solvents eluted the highest variety and quantity of humic acid-like substances (Region V), while the low polarity (dichloromethane) elution solvent was more suitable for eluting tyrosine (Region I) and tryptophan (Region II). Compared to eluting only with methanol, sequential elution and recombination using the three aforementioned solvents demonstrated a significant increase in not only DOC recovery (by 7%), but fluorescence integral values and fluorescence characteristics covering collectively much larger fluorescence regions that more closely resembled raw water. For the first time, the fluorescence EEM of waste after loading the sample revealed a previously overlooked FDOM loss of 20%, caused by ineffective adsorption onto the solid phase resin. Substantial carbonaceous and nitrogenous FDOM were present in this fraction (the fluorescence intensity of aromatic protein in waste exceeds 20% of that in raw water), indicating possible underestimations of FDOM-related research in areas such as disinfection byproduct and toxicity work. The results of this study provide both a qualitative and quantitative characterization of the elution and lost products of SPE in capturing FDOM.


Assuntos
Acetona , Metanol , Cloreto de Metileno , Espectrometria de Fluorescência/métodos , Matéria Orgânica Dissolvida , Corantes , Substâncias Húmicas/análise , Extração em Fase Sólida , Solventes
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122766, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120952

RESUMO

To establish a simple and nondestructive method for measuring plant wound-healing ability, we characterized the fluorescence characteristics of wounds on hypocotyl of soybean seedlings during healing process. Wounds were manually created on the stem of soybean seedlings 7 days after sowing. The fluorescence time-series characteristics of the wounds were measured until 96 h after wounding using excitation emission matrix (EEM) and fluorescence images excited by wavelength of 365 nm. In the EEM of wounds, three main fluorescence peaks were observed, and the intensity decreased with time after wounding. The reddish color due to chlorophyll in fluorescence images also decreased with healing process. In addition, microscopic observation of the wounded tissue using a confocal laser microscope showed that the intensity of lignin or suberin like fluorescence increased with healing time, which might have blocked the excitation light. These results suggest that UV-excited fluorescence can be a new indicator of the healing ability of plant tissues.


Assuntos
Glycine max , Plântula , Cicatrização , Fatores de Tempo , Imagem Óptica
11.
Phytochem Anal ; 34(3): 280-288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36597766

RESUMO

INTRODUCTION: Cannabis sativa L. inflorescences are rich in secondary metabolites, particularly cannabinoids. The most common techniques for elucidating cannabinoid composition are expensive technologies, such as high-pressure liquid chromatography (HPLC). OBJECTIVES: We aimed to develop and evaluate the performance of a novel fluorescence spectroscopy-based method coupled with N-way partial least squares regression (N-PLS-R) and partial least squares discriminant analysis (PLS-DA) models to replace the expensive chromatographic methods for preharvest cannabinoid quantification. METHODOLOGY: Fresh medicinal cannabis inflorescences were collected and ethanol extracts were prepared. Their excitation-emission spectra were measured using fluorescence spectroscopy and their cannabinoid contents were determined by HPLC-PDA. Subsequently, N-PLS-R and PLS-DA models were applied to the excitation-emission matrices (EEMs) for cannabinoid concentration prediction and cultivar classification, respectively. RESULTS: The N-PLS-R model was based on a set of EEMs (n = 82) and provided good to excellent quantification of (-)-Δ9-trans-tetrahydrocannabinolic acid, cannabidiolic acid, cannabigerolic acid, cannabichromenic acid, and (-)-Δ9-trans-tetrahydrocannabinol (R2 CV and R2 pred  > 0.75; RPD > 2.3 and RPIQ > 3.5; RMSECV/RMSEC ratio < 1.4). The PLS-DA model enabled a clear distinction between the four major classes studied (sensitivity, specificity, and accuracy of the prediction sets were all ≥0.9). CONCLUSIONS: The fluorescence spectral region (excitation 220-400 nm, emission 280-550 nm) harbors sufficient information for accurate prediction of cannabinoid contents and accurate classification using a relatively small data set.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Cannabis/química , Análise dos Mínimos Quadrados , Espectrometria de Fluorescência , Canabinoides/análise
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122094, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442342

RESUMO

Sweet peppers are a popular vegetable with various surface colors, such as green, purple, red, or yellow. To characterize the unique fluorescence properties associated with a broad range of sweet peppers of various colors (14 varieties), a fluorescence spectrofluorometer and imaging were used. The results showed that all cultivars in the experiment had blue fluorescence emissions when excited with light in the UV-A region, while chlorophyll fluorescence could be observed in green peppers. The emitted blue fluorescence originated from the epidermis (cuticle layer). The color distribution of these sweet peppers in the a* and b* color space were compared to the image obtained under white LED light. Yellow and red pepper cultivars have thicker, multiple cuticular wax layers and more distinct maturity stages than other sweet pepper varieties observed. With the establishment of this basic fluorescence database, further applications of fluorescence-based techniques and the unification of evaluation methods for pepper quality will be more easily established.


Assuntos
Capsicum , Luz , Imagem Óptica
13.
Bioresour Technol ; 364: 128047, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182018

RESUMO

The stringent growth requirements of anammox bacteria may be a challenge for employing the anammox process for nutrient removal at household or decentralized scales, where low maintenance systems are more successful. Enrichment of anammox bacteria was achieved by 100 d using a lab-scale (32 L) anaerobic baffled reactor (ABR). Even though strict anaerobic conditions were not imposed, NH4-N and NO2-N removals of >90% were maintained after ∼100 d, with greatest removals observed in the first two chambers of the four-chamber ABR. Batch anammox activity tests and results of qPCR analyses confirmed the presence of anammox bacteria in all four ABR chambers. Changes in fluorescent peaks and indices supported that intracellular compounds from reactor biomass evolved along the ABR. The presence of denitrifiers, confirmed by qPCR, and lower NO2/NH4 ratios than predicted by stoichiometry indicated that nitrification-denitrification processes also may have contributed to the high N removal in the anammox ABR.

14.
Photodiagnosis Photodyn Ther ; 39: 102954, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690321

RESUMO

The autofluorescence of endogenous biomolecules (Nicotinamide adenine dinucleotide (NAD, its reduced form NADH and the phosphorylated form NAD(P)H take part in cellular metabolic pathways and has vital importance for in vivo and ex vivo photo diagnostic applications of biological tissues. We present a detailed quenching analysis of Carbonyl cyanide-p-Trifluoromethoxy phenylhydrazone (FCCP) 50-1000 µM and analyzed the fluorescence signal from NADH/ NAD(P)H in vitro (in solution) and in vivo (HeLa cell suspension).The in vitro samples of pure NADH/ NAD(P)H were excited at λ=340±1 nm while the fluorescence signal was collected in the range of 400-550 nm. The quenching process was characterized using excitation emission matrix (EEM) fluorescence spectroscopy and Stern- Volmer plots. The experimental results illustrated maximum fluorescence emission for the control NADH samples (i.e., no FCCP), while the fluorescence signal from the solution progressively decreased with the increasing concentration of the FCCP, until it reaches the base line (i.e., no fluorescence signal) at 1000 µM of FCCP. In vitro study shows that the fluorescence quenching of free NADH was found to be lower than the bound NAD(P)H with similar diminishing trend. The quenching of bound NAD(P)H in cells is attenuated compared to solution quenching possibly due to a contribution from the metabolic/antioxidant response in cells and fluorescence exponential decay curve lies between plated and suspended HeLa cells. A two-fold increase in the fluorescence intensity of NAD(P)H was observed after the bond formation with L-Malate Dehydrogenase (L-MDH, Sigma Aldrich #10127248001) protein This work has applications for sharp tumor demarcation during sensitive surgical procedures as well as to enhance fluorescence based diagnosis of biological tissues.


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Margens de Excisão , NAD , Neoplasias , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Células HeLa , Humanos , Hidrazonas , NAD/metabolismo , Neoplasias/diagnóstico , Neoplasias/cirurgia
15.
Environ Sci Pollut Res Int ; 29(49): 74579-74590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35639319

RESUMO

Compared with the urban sewage treatment plants, the operation of rural decentralized sewage facilities is trapped by the absence of professionals, thus having to be run dependently on the self-adaptive operation of the facilities, which makes timely monitoring particularly important. In this study, organic pollutants in rural domestic sewage and urban domestic sewage are analyzed using ultraviolet-visible (UV-vis) absorption spectroscopy, fluorescence excitation-emission matrix (EEM) and Fourier transform infrared reflectance (FTIR). Compared with the UV-vis absorption spectrum, EEM can not only make up the deficiency in the detection of some easily degradable organics in sewage, but also reveal the transformation of different components, thus indicating timely the treatment progress of rural sewage. Linear fitting of COD and spectrum shows that UV254 combined with fluorescence excitation-emission at Ex/Em = 250/330 nm might be more suitable for the prediction of COD in rural water than the UV254 alone. This is of great significance for guiding the self-adaptive operation of rural domestic sewage facilities, improving their stability and efficiency, so as to improve the rural living environment.


Assuntos
Poluentes Ambientais , Esgotos , Análise Fatorial , Substâncias Húmicas/análise , Compostos Orgânicos/química , Rios/química , Esgotos/química , Espectrometria de Fluorescência/métodos , Água
16.
J Environ Manage ; 316: 115215, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537271

RESUMO

Hyperthermophilic pretreatment composting (HPC) has the advantages of enhanced composting efficiency and accelerated humic substance (HS) over conventional composting (CC). However, the mechanisms towards the accelerated humification process by HPC are still not clear. By means of sterilization technology, the roles of abiotic and biotic components on the formation of HS can be distinguished. The study investigated the humification degree and the succession of microbial community during HPC of pig manure. The mechanisms underlying the accelerated humification by HPC was identified using gamma sterilization. Results showed that HS content increased significantly by 13.72% in HPC and 29.93% in sterilized HPC inoculated with 1% CC (HPC_I), compared with 8.76% increase in CC and 7.12% increase in sterilized CC inoculated with 1% HPC during composting (CC_I). Compared with CC and CC_I, stronger intensities of HA-like and fulvic acid-like components were observed in HPC and HPC_I. Results showed that physicochemical properties, especially pH, were the key factors in accelerating the humification in HPC, while both physicochemical properties and microbial community contributed to the HA formation in CC. The study contributed to a better understanding of the mechanism towards the accelerated humification degree in HPC.


Assuntos
Compostagem , Animais , Archaea , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Esterco , Solo/química , Suínos
17.
Membranes (Basel) ; 12(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448343

RESUMO

With the increasing concern about climate change and the energy crisis, the use of reverse electrodialysis (RED) to utilize salinity gradient power (SGP) has drawn attention as one of the promising renewable energy sources. However, one of the critical issues in RED processes is membrane fouling and channel blockage, which lead to a decrease in the power density. Thus, this study aims to improve our understanding of SGP generation by using RED by investigating the effect of pretreatment on the RED performance. Experiments were conducted by using a laboratory-scale experimental setup for RED. The low-salinity and high-salinity feed solutions were brackish water reverse osmosis (BWRO) brine from a wastewater reclamation plant, and a NaCl solution simulating seawater desalination brine. Several pretreatments were applied to the RED process, such as cartridge filter (CF), microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), activated filter media (AFM), and granular activated carbon (GAC). The results indicate that the open-circuit voltage (OCV) and the power density were similar, except for in the NF pretreatment, which removed the dissolved ions to increase the net SGP. However, the pressure in the RED stack was significantly affected by the pretreatment types. The excitation-emission matrix (EEM) fluorescence spectroscopy and the parallel factor analysis (PARAFAC) quantified the organic compounds that are related to the stack pressure. These results suggest that the removal of both colloidal and organic matters by pretreatments is crucial for improving the RED performance by reducing the pressure that is increased in the RED stack.

18.
Sci Total Environ ; 825: 153686, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131245

RESUMO

Biochar plays an important role in controlling migration of pollutants in soils. However, little information is available on the interactions between soil-derived dissolved organic matter (DOM), biochar and soluble metal species. The aim of this work was to present the adsorption process of soil DOM by biochar (corn straw biochar produced at 700 °C) and to determine whether co-sorption of DOM would change the affinity for Pb(II). The adsorption rates of biochar and biochar + DOM for Pb(II) were best fitted with a pseudo-second order kinetic model, and the equilibrium adsorption isotherm data agreed well with both the Langmuir and Freundlich models. Adsorption of DOM to biochar reached equilibrium after 15 h with an uptake of 52% of the supplied DOM. We used fluorescence excitation-emission matrices (EEMs) with parallel factor (PARAFAC) analysis to demonstrate that protein-like, fulvic acid-like and humic acid-like substances were the primary constituents of the DOM, which were quenched over time in the presence of biochar. Synchronous fluorescence spectra indicated that the protein-like structures were the predominant fluorescence substances in DOM. Two-dimensional correlation spectroscopy (2D-COS) showed the binding of DOM to biochar resulted in the quenching of fluorescence in the order: protein-like substances > humic-like substances (280 > 355 nm). Data supports the notion that DOM can increase the adsorption capacity of biochar for metal-ions.


Assuntos
Matéria Orgânica Dissolvida , Chumbo , Carvão Vegetal , Substâncias Húmicas/análise , Solo/química , Espectrometria de Fluorescência/métodos
19.
Anal Bioanal Chem ; 414(7): 2439-2452, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099585

RESUMO

A real-time assay for multiple enzyme activities in cascade reactions is required for research on metabolism and bioengineering. Tyrosinase has the bifunctional activity of monophenolase and diphenolase. A combined strategy of three-way calibration with excitation-emission matrix (EEM) fluorescence was developed for real-time and simultaneous determination of monophenolase and diphenolase activity with tyrosine as a substrate. Mathematical separation and second-order advantage were utilized to solve spectral overlapping and uncalibrated interferents during complex dynamic enzymatic processes. Kinetic evolution profiles of EEM were monitored to stack a fusion three-way data array together with static samples. Using a parallel factor analysis (PARAFAC) algorithm, pseudo-univariate calibration curves with limits of detection (LODs) of 3.00 µM and 0.85 µM were established to simultaneously and real-time measure tyrosine and DOPA. Progress curves for tyrosine consumption by monophenolase and DOPA consumption by diphenolase were obtained using the law of mass conservation to calculate the initial velocity. The LODs for monophenolase and diphenolase were 0.0232 U⋅mL-1 and 0.0316 U⋅mL-1. The method achieved real-time and simultaneous assays of multiple enzyme activities in cascade reactions. It showed potential application in the metabolic pathway and biochemical industry.


Assuntos
Monofenol Mono-Oxigenase , Oxirredutases , Calibragem , Catálise , Cinética , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/análise
20.
Sci Total Environ ; 805: 150198, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537712

RESUMO

Dissolved organic matter (DOM) represents the most mobile and reactive pool of soil organic matter (SOM). Climate changes, such as global warming and altered precipitation exert considerable influences on the quality and quantity of soil DOM. However, rare reports have focused on the interactive effects of soil warming and increased precipitation. In the present study, we conducted a 90-day incubation experiment to investigate how the concentration, source and chemical composition of DOM from an Alfisol respond to the variations of temperatures (15, 30 and 45 °C) and moistures (40%, 60%, and 80% of saturated soil water content). Four DOM components were identified through fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC). Increased temperature alone aggravated the decomposition of plant-derived aromatic components (C2 and C4) but promoted the accumulation of microbial-derived aliphatic carbon (C1) and tryptophan-like component (C3). Increased fungi/bacteria ratio with warming was responsible for the decomposition of plant-derived components. Warming-induced disassociation of Ca-bearing mineral to colloidal Ca facilitated the accrual of microbial-derived aliphatic DOM. Humidification alone and humidification + warming significantly increased the concentration of DOM and the percentage of plant-derived aromatic carbon (C2, C4), which was attributed to the release of Fe-bearing mineral-OC. Based on the above findings along with the results of two-way ANOVA and Variation partition analysis, we infer that moisture will play a dominant role in regulating the chemical composition of DOM in Alfisols under both warming and humidification which in turn impact global C cycling and the ultimate climate.


Assuntos
Solo , Qualidade da Água , Carbono , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA