Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
EBioMedicine ; 102: 105045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471394

RESUMO

BACKGROUND: Schizophrenia, a debilitating psychiatric disorder, displays considerable interindividual variation in clinical presentations. The ongoing debate revolves around whether this heterogeneity signifies a continuum of severity linked to a singular causative factor or a collection of distinct subtypes with unique origins. Within the realm of schizophrenia, the functional impairment of GluN2A, a subtype of the NMDA receptor, has been associated with an elevated risk. Despite GluN2A's expression across various neuronal types throughout the brain, its specific contributions to schizophrenia and its involvement in particular cell types or brain regions remain unexplored. METHODS: We generated age-specific, cell type-specific or brain region-specific conditional knockout mice targeting GluN2A and conducted a comprehensive analysis using tests measuring phenotypes relevant to schizophrenia. FINDINGS: Through the induction of germline ablation of GluN2A, we observed the emergence of numerous schizophrenia-associated abnormalities in adult mice. Intriguingly, GluN2A knockout performed at different ages, in specific cell types and within distinct brain regions, we observed overlapping yet distinct schizophrenia-related phenotypes in mice. INTERPRETATION: Our interpretation suggests that the dysfunction of GluN2A is sufficient to evoke heterogeneous manifestations associated with schizophrenia, indicating that GluN2A stands as a prominent risk factor and a potential therapeutic target for schizophrenia. FUNDING: This project received support from the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02) awarded to Y.C. and the Natural Science Foundation of Shanghai (Grant No. 19ZR1468600 and 201409003800) awarded to G.Y.


Assuntos
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Camundongos , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
2.
J Physiol ; 602(9): 2047-2060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38500302

RESUMO

Adverse experiences in early life can induce maladaptive responses to acute stress in later life. Chronic social isolation during adolescence is an early life adversity that can precipitate stress-related psychiatric disorders. We found that male mice after 8 weeks of adolescent social isolation (SI) have markedly increased aggression after being exposed to 2 h of restraint stress (RS), which was accompanied by a significant increase of AMPA receptor- and NMDA receptor-mediated synaptic transmission in prefrontal cortex (PFC) pyramidal neurons of SIRS males. Compared to group-housed counterparts, SIRS males exhibited a significantly decreased level of histone H3 acetylation in PFC. Systemic administration of class I histone deacetylase inhibitors, romidepsin or MS-275, ameliorated the aggressive behaviour, as well as general social interaction deficits, of SIRS males. Electrophysiological recordings also found normalization of PFC glutamatergic currents by romidepsin treatment of SIRS male mice. These results revealed an epigenetic mechanism and intervention avenue for aggression induced by chronic social isolation. KEY POINTS: Adolescent chronic social isolation can precipitate stress-related psychiatric disorders. A significant increase of glutamatergic transmission is found in the prefrontal cortex (PFC) of socially isolated male mice exposed to an acute stress (SIRS). Treatment with class I histone deacetylase (HDAC) inhibitors ameliorates the aggressive behaviour and social interaction deficits of SIRS males, and normalizes glutamatergic currents in PFC neurons. It provides an epigenetic mechanism and intervention avenue for aberrant stress responses induced by chronic social isolation.


Assuntos
Agressão , Inibidores de Histona Desacetilases , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Isolamento Social , Estresse Psicológico , Animais , Masculino , Inibidores de Histona Desacetilases/farmacologia , Isolamento Social/psicologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Agressão/efeitos dos fármacos , Camundongos , Depsipeptídeos/farmacologia , Piridinas/farmacologia , Benzamidas/farmacologia , Restrição Física , Transmissão Sináptica/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Células Piramidais/metabolismo
3.
Neuron ; 112(8): 1286-1301.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38359825

RESUMO

Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs. Here, using rodent whisker hair follicles, we show that tactile signals are encoded at MNCs as fast excitatory synaptic transmission. This synaptic transmission is mediated by acid-sensing ion channels (ASICs) located on the neurites of MNCs, with protons as the principal transmitters. Pharmacological inhibition or genetic deletion of ASICs diminishes the tactile encoding at MNCs and impairs tactile discrimination in animals. Together, ASICs are required for tactile encoding at MNCs to enable tactile discrimination in mammals.


Assuntos
Canais Iônicos Sensíveis a Ácido , Células de Merkel , Pré-Escolar , Humanos , Animais , Células de Merkel/fisiologia , Tato/fisiologia , Transmissão Sináptica , Mamíferos
4.
Neuropsychopharmacol Rep ; 44(1): 256-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38156409

RESUMO

AIM: Excitatory projections from the prelimbic cortex (PL) to the basolateral nucleus of the amygdala (BLA) are implicated in the regulation of anxiety-like behaviors, and we previously demonstrated that anxiolytic-like effects of the selective delta-opioid receptor (DOP) agonist KNT-127 is involved in suppressing glutamate neurotransmission in the PL. Here, we investigated the mechanisms underlying the anxiolytic-like effect of KNT-127 in mice by combining optogenetic stimulation of the PL-BLA pathway with behavioral analyses. METHODS: Four-week-old male C57BL/6J mice received bilateral administration of adeno-associated virus (AAV)2-CaMKIIa-hChR2(H134R)-enhanced yellow fluorescent protein (EYFP) into the PL to induce expression of the light-activated excitatory ionic channel ChR2. Subsequently, an optic fiber cannula connected to a wireless photo-stimulator was implanted into the BLA for optogenetic PL-BLA pathway stimulation. We evaluated innate anxiety using the elevated plus maze (EPM) and open field (OF) tests as well as learned anxiety using the contextual fear conditioning (CFC) test. RESULTS: Optogenetic activation of the PL-BLA pathway enhanced anxiety-like behaviors in the EPM and OF, while prior subcutaneous administration of KNT-127 (10 mg/kg) reduced this anxiogenic effect. In contrast, optogenetic activation of the PL-BLA pathway had no significant effect on conditioned fear. CONCLUSION: Our findings indicate that the PL-BLA circuit contributes to innate anxiety and that the anxiolytic-like effects of KNT-127 are mediated at least in part by suppression of PL-BLA transmission. The PL delta-opioid receptor may thus be an effective therapeutic target for anxiety disorders.


Assuntos
Ansiolíticos , Complexo Nuclear Basolateral da Amígdala , Morfinanos , Camundongos , Animais , Masculino , Complexo Nuclear Basolateral da Amígdala/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Camundongos Endogâmicos C57BL , Ansiedade , Analgésicos Opioides
5.
CNS Neurosci Ther ; 29(11): 3644-3656, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37302990

RESUMO

INTRODUCTION: Annexin A2 (ANXA2) participates in the pathology of a variety of diseases. Nevertheless, the impact of ANXA2 on epilepsy remains to be clarified. AIMS: Hence, the study aimed at investigating the underlying role of ANXA2 in epilepsy through behavioral, electrophysiological, and pathological analyses. RESULTS: It was found that ANXA2 was markedly upregulated in the cortical tissues of temporal lobe epilepsy patients (TLE), kainic acid (KA)-induced epilepsy mice, and in a seizure-like model in vitro. ANXA2 silencing in mice suppressed first seizure latency, number of seizures, and seizure duration in behavioral analysis. In addition, abnormal brain discharges were less frequent and shorter in the hippocampal local field potential (LFP) record. Furthermore, the results showed that the frequency of miniature excitatory postsynaptic currents was decreased in ANXA2 knockdown mice, indicating that the excitatory synaptic transmission is reduced. Co-immunoprecipitation (COIP) experiments demonstrated that ANXA2 interacted with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. Moreover, ANXA2 knockdown decreased GluA1 expression on the cell surface and its phosphorylation onserine 831 and serine 845, related to the decreased phosphorylation levels mediated by protein kinases A and C (PKA and PKC). CONCLUSIONS: This study covers a previously unknown and key function of ANXA2 in epilepsy. These findings indicate that ANXA2 can regulate excitatory synaptic activity mediated by AMPAR subunit GluA1 to improve seizure activity, which can provide novel insights for the treatment and prevention of epilepsy.


Assuntos
Anexina A2 , Epilepsia , Humanos , Camundongos , Animais , Fosforilação , Anexina A2/genética , Anexina A2/metabolismo , Receptores de AMPA/metabolismo , Epilepsia/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo
6.
Int J Neuropsychopharmacol ; 26(5): 359-371, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36951642

RESUMO

BACKGROUND: Opioid use disorder (OUD) is a chronic relapsing psychiatric disorder with an enormous socioeconomic burden. Opioid overdose deaths have reached an epidemic level, especially for fentanyl. One of the biggest challenges to treat OUD is the relapse to drug seeking after prolonged abstinence. Abnormalities in insulin-like growth factor-1 (IGF-1) have been reported in various neurological and psychiatric disorders, including OUD. However, whether IGF-1 and its downstream signaling pathways are associated with relapse to fentanyl seeking remains unclear. METHODS: Mice were subjected to daily 2-hour fentanyl (10 µg/mL, 27 µL/infusion) oral self-administration training for 14 days, followed by 14-day fentanyl cessation. Expression levels of IGF-1/IGF-1 receptor and downstream signaling pathways in the dorsomedial prefrontal cortex (dmPFC) were detected. Then, IGF-1 was bilaterally microinjected into the dmPFC from fentanyl cessation day 9 to day 13. Fentanyl-seeking behavior and excitatory synaptic transmission of pyramidal neurons in PFC were evaluated. RESULTS: We found that 14-day cessation from fentanyl oral self-administration caused significant downregulation of IGF-1 and IGF-1 receptor phosphorylation in the dmPFC. These changes were accompanied by inhibition of the downstream Akt and S6 signaling pathway. In addition, local administration of IGF-1 in the dmPFC attenuated context-induced fentanyl-seeking behavior. Furthermore, electrophysiology and immunohistochemistry analyses showed that IGF-1 blocked fentanyl-induced reduction of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors-mediated excitatory synaptic transmission as well as synaptic expression of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and N-methyl-D-aspartate receptor subunits. CONCLUSIONS: These results suggest that IGF-1 in the PFC plays a pivotal role in regulating fentanyl seeking after prolonged cessation from fentanyl oral self-administration.


Assuntos
Fentanila , Transtornos Relacionados ao Uso de Opioides , Ratos , Camundongos , Animais , Fentanila/farmacologia , Fentanila/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Microinjeções , Córtex Pré-Frontal/metabolismo , Comportamento de Procura de Droga/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Recidiva
7.
Brain Res ; 1801: 148208, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549361

RESUMO

The singing of songbirds is a complex vocal behavior. It was reported that brain-derived neurotrophic factor (BDNF), a key neurotrophic factor involved in neuronal survival and activity, plays an important role in regulation of songbirds' song behavior. In all song-related nuclei, the electrophysiological activity of robust nucleus of the arcopallium (RA) in the forebrain of songbirds is directly related to birdsong output. Whether BDNF regulates the electrophysiological activity and synaptic transmission of RA causing the change of song behavior need be further explored. In this study, the effects of BDNF on the electrophysiological activity and excitatory synaptic transmission of RA projection neurons (PNs) in adult male zebra finches were investigated using whole-cell patch clamp recordings in vitro. Our results showed that BDNF increased the firing of evoked action potentials in RA PNs and decreased the membrane input resistance and membrane time constant of RA PNs, indicating that BDNF can promote RA PNs excitability by reducing membrane input resistance and membrane time constant. Meanwhile, BDNF increased the frequency rather than amplitude of miniature excitatory postsynaptic currents (mEPSCs) in RA PNs. Moreover, the effects of BDNF on the excitability, intrinsic membrane properties and mEPSCs of RA PNs were blocked by its receptor TrkB antagonist K252a. These results indicate that BDNF via TrkB enhances the excitability and excitatory synaptic transmission of RA PNs in adult male songbirds through presynaptic mechanisms, suggesting a possible cellular mechanism by which BDNF regulates song behavior.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tentilhões , Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Neurônios , Tentilhões/fisiologia , Transmissão Sináptica/fisiologia , Interneurônios/fisiologia , Vocalização Animal/fisiologia
8.
Front Mol Neurosci ; 15: 807671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935339

RESUMO

Epilepsy is a common disease of the nervous system. Autophagy is a degradation process involved in epilepsy, and in turn, seizures can activate autophagy. Beclin1 plays a critical role in autophagy and participates in numerous physiological and pathological processes. However, the mechanism underlying the effect of Beclin1 on epilepsy remains unclear. In this study, we detected increased expression of Beclin1 in brain tissues from patients with temporal lobe epilepsy (TLE). Heterozygous disruption of beclin1 decreased susceptibility to epilepsy and suppressed seizure activity in two mouse epilepsy models. We further illustrated for the first time that heterozygous disruption of beclin1 suppresses excitatory synaptic transmission, which may be caused by a decreased dendritic spine density. These findings suggest for the first time that the regulation of Beclin1 may serve as a strategy for antiepileptic therapy. In addition, Beclin1 participates in synaptic transmission, and the development of dendritic spines may be a biological function of Beclin1 independent of its role in autophagy.

9.
Neurobiol Stress ; 20: 100473, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35982732

RESUMO

The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.

10.
Neuropharmacology ; 217: 109204, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931212

RESUMO

Insulin-like growth factor 1 (IGF1) influences synaptic function in addition to its role in brain development and aging. Although the expression levels of IGF1 and IGF1 receptor (IGF1R) peak during development and decline with age, the adult brain has abundant IGF1 or IGF1R expression. Studies reveal that IGF1 regulates the synaptic transmission in neurons from young animals. However, the action of IGF1 on neurons in the adult brain is still unclear. Here, we used prefrontal cortical (PFC) slices from adult mice (∼8 weeks old) to characterize the role of IGF1 on excitatory synaptic transmission in pyramidal neurons and the underlying molecular mechanisms. We first validated IGF1R expression in pyramidal neurons using translating ribosomal affinity purification assay. Then, using whole-cell patch-clamp recording, we found that IGF1 attenuated the amplitude of evoked excitatory postsynaptic current (EPSC) without affecting the frequency and amplitude of miniature EPSC. Furthermore, this decrease in excitatory neurotransmission was blocked by pharmacological inhibition of IGF1R or conditional knockdown of IGF1R in PFC pyramidal neurons. In addition, we determined that IGF1-induced decrease of EPSC amplitude was due to postsynaptic effect (internalization of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors [AMPAR]) rather than presynaptic glutamate release. Finally, we found that inhibition of metabotropic glutamate receptor subtype-1 (mGluR1) abolished IGF1-induced attenuation of evoked EPSC amplitude and decrease of AMPAR expression at synaptic membrane, suggesting mGluR1-mediated endocytosis of AMPAR was involved. Taken together, these data provide the first evidence that IGF1 regulates excitatory synaptic transmission in adult PFC via the interaction between IGF1R-dependent signaling pathway and mGluR1-mediated AMPAR endocytosis.


Assuntos
Fator de Crescimento Insulin-Like I , Córtex Pré-Frontal , Células Piramidais , Transmissão Sináptica , Animais , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia
11.
Biochem Biophys Res Commun ; 624: 28-34, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932576

RESUMO

Accumulating evidence suggests that the serotonergic (5-HT) system in the amygdala has significant effects on affective states. Dysregulation of the 5-HT system in the basolateral amygdaloid complex causes affective disorders. To search for therapeutic targets, subtype specification of 5-HT receptors is crucial. The present study was undertaken to identify the 5-HT receptor subtype responsible for the 5-HT-mediated suppression of excitatory transmission to principal neurons (PNs) in the lateral amygdala (LA). Whole-cell recordings were performed to record excitatory post synaptic currents (EPSCs) in acute rat brain slices. We confirmed that 5-HT and α-m-5-HT, a broad 5-HT2 receptor agonist, attenuated EPSCs in LA PNs. The extent of suppressions by 5-HT and α-m-5-HT remained unchanged in the presence of ritanserin, a broad 5-HT2 receptor antagonist. In the presence of NAS-181, a selective 5-HT1B receptor antagonist, the extent of EPSC suppressions by 5-HT and α-m-5-HT was diminished. CP93129, a selective 5-HT1B receptor agonist, attenuated EPSCs in LA PNs, and this effect was abolished in the presence of NAS-181. Additionally, the paired-pulse ratio of EPSCs was increased by CP93129. Thus, our results indicate that 5-HT and α-m-5-HT attenuate excitatory transmissions to LA PNs via presynaptic 5-HT1B receptors.


Assuntos
Receptor 5-HT1B de Serotonina , Serotonina , Tonsila do Cerebelo , Animais , Potenciais Pós-Sinápticos Excitadores , Neurônios , Ratos , Serotonina/farmacologia , Serotonina/fisiologia , Transmissão Sináptica
12.
Neuropharmacology ; 217: 109201, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917875

RESUMO

Social interactions define the human experience, but these integral behaviors are disrupted in many psychiatric disorders. Social behaviors have evolved over millennia, and neuromodulatory systems that promote social behavior in invertebrates are also present in mammalian brains. One such conserved neuromodulator, neuropeptide Y (NPY), acts through several receptors including the Y1r, Y2r, and Y5r. These receptors are present in brain regions that control social behavior, including the nucleus accumbens (NAc). However, whether NPY modulates NAc neurotransmission is unknown. Using whole-cell patch-clamp electrophysiology of NAc neurons, we find that multiple NPY receptors regulate excitatory synaptic transmission in a cell-type specific manner. At excitatory synapses onto D1+ MSNs, Y1r activity enhances transmission while Y2r suppresses transmission. At excitatory synapses onto D1- MSNs, Y5r activity enhances transmission while Y2r suppresses transmission. Directly infusing NPY or the Y1r agonist [Leu31, Pro34]-NPY into the NAc significantly increases social interaction with an unfamiliar conspecific. Inhibition of an enzyme that breaks down NPY, dipeptidyl peptidase IV (DPP-IV), shifts the effect of NPY on D1+ MSNs to a Y1r dominated phenotype. Together, these results increase our understanding of how NPY regulates neurotransmission in the NAc and identify a novel mechanism underlying the control of social behavior. Further, they reveal a potential strategy to shift NPY signaling for therapeutic gain.


Assuntos
Neuropeptídeo Y , Núcleo Accumbens , Animais , Humanos , Mamíferos/metabolismo , Camundongos , Neuropeptídeo Y/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Comportamento Social , Transmissão Sináptica
13.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012647

RESUMO

Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota-gut-brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ácido Glutâmico/metabolismo , Humanos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de Glutamato/metabolismo , Acidente Vascular Cerebral/metabolismo , Transmissão Sináptica
14.
Elife ; 112022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471147

RESUMO

Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.


Assuntos
Doença de Alzheimer , Vesículas Sinápticas , Doença de Alzheimer/metabolismo , Animais , Dinamina I/genética , Dinamina I/metabolismo , Dinaminas/metabolismo , Endocitose , Camundongos , Microtúbulos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
15.
Neuropharmacology ; 204: 108879, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785164

RESUMO

Gonadal steroid hormone influences behavioral choice of adult animals toward pups, parental or aggressive. We previously reported that long-term administration of 17ß-estradiol (E2) to male mice during sexual maturation induces aggressive behavior toward conspecific pups, which is called "infanticide," and significantly enhanced excitatory synaptic transmission in the rhomboid nucleus of bed nucleus of the stria terminalis (BSTrh), which is an important brain region for infanticide. However, it is unclear how estrogen receptor-dependent signaling after sexual maturity regulates neural circuits including the BSTrh. Here we revealed that E2 administration to gonadectomized mice in adulthood elicited infanticidal behavior and enhanced excitatory synaptic transmission in the BSTrh by increasing the probability of glutamate release from the presynaptic terminalis. Next, we performed whole-brain mapping of E2-sensitive brain regions projecting to the BSTrh and found that amygdalohippocampal area (AHi) neurons that project to the BSTrh densely express estrogen receptor 1 (Esr1). Moreover, E2 treatment enhanced synaptic connectivity in the AHi-BSTrh pathway. Together, these results suggest that reinforcement of excitatory inputs from AHi neurons into the BSTrh by estrogen receptor-dependent signaling may contribute to the expression of infanticide.


Assuntos
Tonsila do Cerebelo/metabolismo , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/fisiologia , Hipocampo/metabolismo , Núcleos da Linha Média do Tálamo/metabolismo , Núcleos Septais/metabolismo , Transdução de Sinais/fisiologia , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Glutamatos/metabolismo , Masculino , Camundongos , Transmissão Sináptica/efeitos dos fármacos
16.
Eur J Pharmacol ; 913: 174625, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758353

RESUMO

The present study examined contribution of the transient receptor potential vanilloid 1 channel (TRPV1) to the chronic orofacial pain. Bilateral partial nerve ligation (PNL) of the mental nerve, a branch of trigeminal nerve, was performed to induce neuropathic pain. The withdrawal threshold in response to mechanical stimulation of the lower lip skin was substantially reduced after the surgery in the PNL rats while it remained unchanged in the sham rats. This reduction in the PNL rats was alleviated by pregabalin injected intraperitoneally (10 mg/kg) and intracisternally (10, 30, 100 µg). Furthermore, an intracisternal injection of AMG9810, an antagonist of TRPV1, (1.5, 5.0 µg) attenuated the reduction of withdrawal threshold. Spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) were recorded from the spinal trigeminal subnucleus caudalis (Vc) neurons in the brainstem slice, which receive the orofacial nociceptive signals. In the PNL rats, superfusion of capsaicin (0.03, 0.1 µM) enhanced their frequency without effect on the amplitude and the highest concentration (0.3 µM) increased both the frequency and amplitude. In the sham rats, only 0.3 µM capsaicin increased their frequency. Thus, capsaicin-induced facilitation of sEPSCs and mEPSCs in the PNL rats was significantly stronger than that in the sham rats. AMG9810 (0.1 µM) attenuated the capsaicin's effect. Capsaicin was ineffective on the trigeminal tract-evoked EPSCs in the PNL and sham rats. These results suggest that the chronic orofacial pain in the PNL model results from facilitation of the spontaneous excitatory synaptic transmission in the Vc region through TRPV1 at least partly.


Assuntos
Dor Crônica/patologia , Dor Facial/patologia , Neuralgia/patologia , Canais de Cátion TRPV/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Animais , Capsaicina/administração & dosagem , Capsaicina/toxicidade , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Dor Facial/induzido quimicamente , Dor Facial/tratamento farmacológico , Humanos , Masculino , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Núcleo Inferior Caudal do Nervo Trigêmeo/citologia , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos
17.
Life Sci ; 285: 119959, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536496

RESUMO

AIMS: Early life stress (ELS) increases the risk of psychiatric diseases such as anxiety disorders and depression in later life. Hyperactivation of the basolateral amygdala (BLA) neurons plays a pivotal role in the pathogenesis of stress-related diseases. However, the functional roles of BLA neurons in ELS-induced anxiety disorders are not completely understood. MAIN METHODS: Mice were subjected to maternal separation (MS) during postnatal days 3 to 21 to mimic ELS. Anxiety-like behavior was tested by open field test (OFT), elevated plus maze (EPM), and novelty suppressed feeding (NSF). Then, c-fos expression, a proxy for neuronal activity, was evaluated by immunofluorescence. Finally, synaptic transmission and intrinsic excitability were measured by whole-cell patch-clamp recordings. KEY FINDINGS: MS significantly increased anxiety-like behavior in adulthood, as indicated by less time spent in the center area of the OFT, less time spent in and fewer entries to the open arms of the EPM, and increased latency to feed in NSF. Mechanistically, MS increased the expression of c-fos in BLA. MS enhanced the excitatory, but not inhibitory, synaptic transmission onto BLA projection neurons (PNs), which was caused by enhanced presynaptic glutamate release. Moreover, MS also markedly increased the intrinsic neuronal excitability of BLA PNs, probably due to the reduced medium afterhyperpolarization (mAHP) in BLA PNs. SIGNIFICANCE: Our results suggest that the changes of neuronal activity and synaptic transmission in the BLA PNs may play a crucial role in ELS-induced anxiety-like behavior, and these findings provide new insights into the pathological mechanisms of stress-related anxiety disorders.


Assuntos
Ansiedade , Complexo Nuclear Basolateral da Amígdala , Privação Materna , Plasticidade Neuronal , Estresse Psicológico , Animais , Feminino , Masculino , Camundongos , Ansiedade/etiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais , Neurônios/fisiologia , Transmissão Sináptica
18.
Cell Rep ; 35(11): 109248, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133925

RESUMO

Loss-of-function mutations in proline-rich transmembrane protein-2 (PRRT2) cause paroxysmal disorders associated with defective Ca2+ dependence of glutamatergic transmission. We find that either acute or constitutive PRRT2 deletion induces a significant decrease in the amplitude of evoked excitatory postsynaptic currents (eEPSCs) that is insensitive to extracellular Ca2+ and associated with a reduced contribution of P/Q-type Ca2+ channels to the EPSC amplitude. This synaptic phenotype parallels a decrease in somatic P/Q-type Ca2+ currents due to a decreased membrane targeting of the channel with unchanged total expression levels. Co-immunoprecipitation, pull-down assays, and proteomics reveal a specific and direct interaction of PRRT2 with P/Q-type Ca2+ channels. At presynaptic terminals lacking PRRT2, P/Q-type Ca2+ channels reduce their clustering at the active zone, with a corresponding decrease in the P/Q-dependent presynaptic Ca2+ signal. The data highlight the central role of PRRT2 in ensuring the physiological Ca2+ sensitivity of the release machinery at glutamatergic synapses.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Potenciais Pós-Sinápticos Excitadores , Espaço Extracelular/química , Glutamatos/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Ligação Proteica , Transmissão Sináptica
19.
Neurobiol Dis ; 156: 105419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111520

RESUMO

Migraine is a common but poorly understood sensory circuit disorder. Mouse models of familial hemiplegic migraine (FHM, a rare monogenic form of migraine with aura) show increased susceptibility to cortical spreading depression (CSD, the phenomenon that underlies migraine aura and can activate migraine headache mechanisms), allowing an opportunity to investigate the mechanisms of CSD and migraine onset. In FHM type 2 (FHM2) knock-in mice with reduced expression of astrocytic Na+, K+-ATPases, the reduced rate of glutamate uptake into astrocytes can account for the facilitation of CSD initiation. Here, we investigated the underlying mechanisms and show that the reduced rate of glutamate clearance in FHM2 mice results in increased amplitude and slowing of rise time and decay of the NMDA receptor (NMDAR) excitatory postsynaptic current (EPSC) elicited in layer 2/3 pyramidal cells by stimulation of neuronal afferents in somatosensory cortex slices. The relative increase in NMDAR activation in FHM2 mice is activity-dependent, being larger after high-frequency compared to low-frequency afferent activity. Inhibition of GluN1-N2B NMDARs, which hardly affected the NMDAR EPSC in wild-type mice, rescued the increased and prolonged activation of NMDARs as well as the facilitation of CSD induction and propagation in FHM2 mice. Our data suggest that the enhanced susceptibility to CSD in FHM2 is mainly due to specific activation of extrasynaptic GluN1-N2B NMDARs and point to these receptors as possible therapeutic targets for prevention of CSD and migraine.


Assuntos
Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico/metabolismo , Transtornos de Enxaqueca/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Espaço Extracelular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/genética , Córtex Somatossensorial/metabolismo
20.
Biochem Biophys Res Commun ; 560: 192-198, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000468

RESUMO

The medial prefrontal cortex (mPFC) plays a vital role in the processing of emotional events. It has been shown that activation of the glutamatergic transmission in prelimbic subregion of the mPFC (PL-PFC) evoked anxiety-like behavior in rodents. We previously reported that local perfusion of a selective agonist to delta-opioid receptor (DOP), KNT-127, attenuated the veratrine-induced elevation of extracellular glutamate in the PL-PFC and anxiety-like behavior in mice. These results suggested the possibility that KNT-127 suppresses glutamate release from the presynaptic site in the PL-PFC. To examine this possibility directly, we performed whole-cell patch-clamp recording from principal neurons in the PL-PFC and examined the spontaneous and electrically-evoked excitatory postsynaptic currents (EPSC)s. We found that bath application of KNT-127 significantly decreased the frequency of spontaneous and miniature EPSCs. Conversely, amplitude, rise time, and decay time of spontaneous and miniature EPSCs were not affected by bath application of KNT-127. Also, KNT-127 increased paired-pulse ratios of electrically-evoked EPSCs in the PL-PFC principal neurons tested. Further, we analyzed the firing properties of pyramidal neurons in the PL-PFC and found that KNT-127 treatment significantly reduced the number of action potentials and firing threshold. These results suggested that KNT-127 suppresses glutamatergic synaptic transmission by inhibiting glutamate release from the presynaptic site and reduces neuronal excitability in the mouse PL-PFC. We propose the possibility that these suppressing effects of KNT-127 on PL-PFC activity are part of the underlying mechanisms of its anxiolytic-like effects.


Assuntos
Morfinanos/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Receptores Opioides delta/agonistas , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA