Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.732
Filtrar
1.
Mol Genet Genomics ; 299(1): 91, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365491

RESUMO

Preconception and prenatal genetic counseling is a well-established means of risk assessment in many parts of the world, and in recent years, an emerging concept in India. Likelihood of an offspring having autosomal recessive disorder increases based on the degree of consanguinity. Hence, genetic testing of the couple for the identification of carrier status for disease-causing variants is crucial. The purpose of this study is to understand the frequency of genetic abnormalities in consanguineous marriages by using a comprehensive genetic testing algorithm where in karyotyping, FISH, exome sequencing and microarray are used sequentially to determine the genetic etiology based on the clinical presentation and to evaluate the need and benefits of preconceptional and prenatal genetic counseling. This retrospective study includes 66 couples having consanguinity referred for genetic counseling and testing. Of the 66 couples, 58 underwent comprehensive genetic testing which included Karyotyping, Fluorescence in Situ Hybridization (FISH), Microarray and Exome sequencing based on their clinical presentation. The analyses revealed a genetic abnormality in approximately 31% and chromosomal polymorphic variations & variants of uncertain significance in 17% of the couples. Counseling in these couples helped in identifying the carrier status and enabled them to take an informed decision in subsequent pregnancies. These findings reiterate the acute need for preconception and prenatal genetic counseling services in India.


Assuntos
Consanguinidade , Aconselhamento Genético , Testes Genéticos , Diagnóstico Pré-Natal , Humanos , Feminino , Masculino , Testes Genéticos/métodos , Gravidez , Estudos Retrospectivos , Diagnóstico Pré-Natal/métodos , Adulto , Cariotipagem/métodos , Índia/epidemiologia , Sequenciamento do Exoma/métodos , Hibridização in Situ Fluorescente/métodos , Cuidado Pré-Concepcional/métodos
2.
J Pathol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360336

RESUMO

Immune checkpoint blockade (ICB) is currently the standard of care for metastatic renal cell carcinoma (RCC), but treatment responses remain unpredictable. Aristolochic acid (AA), a prevalent supplement additive in Taiwan, has been associated with RCC and induces signature mutations, although its effect on the tumor-immune microenvironment (TIME) is unclear. We aimed to investigate the immune profile of AA-positive RCCs and explore its potential role as a susceptible candidate for ICB. Tissue samples from 22 patients with clear cell RCC (ccRCC) were collected for whole-exome sequencing to determine the genetic features and AA mutational signature (the discovery cohort). The corresponding RNA was sent for NanoString PanCancer IO 360 gene expression analysis to explore the immunological features. The formalin-fixed, parafilm-embedded slides of ccRCCs were sent for multiplex immunohistochemistry/immunofluorescence stain using Vectra system to evaluate the TIME. Tissues from two patients with metastatic RCC demonstrating complete response to ICB were sent for studies to validate the findings (the index patients). The results showed that AA mutational signatures with high tumor mutational burden (TMB) were present in 31.81% of the tumors in the discovery cohort. Three distinct clusters were observed through NanoString analysis. Clusters 1 and 3 were composed mainly of AA-positive RCCs. Cluster 3 RCCs exhibited higher tumor inflammation signature scores and higher immune cell type scores. Vectra analysis revealed a higher percentage of CD15+ and BATF3+ cells in cluster 1, whereas the percentage of CD8+ cells was potentially higher in cluster 3. Strong AA mutational signatures were found in the tumors of two index patients, and both were grouped to cluster 3. In conclusion, AA may induce higher TMB and alter the immune microenvironment in RCCs, which makes the tumors more susceptible to ICB. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

3.
Genes Genomics ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361057

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is a genetically heterogeneous disease. RP 79 has been associated with heterozygous variants of hexokinase 1 (HK1). Only two missense HK1 variants have been reported in 11 families. OBJECTIVE: To discover the molecular pathogenic mechanism of RP and validate the biological harm of HK1 through in vitro experiments. METHODS: We conducted a genetic analysis of a 3-year-old female patient with RP and her family. We also evaluated the ocular phenotypes caused by HK1 (the identified variant). Peripheral blood samples were collected from the patient, her parents, and her brother, and trio whole-exome sequencing was performed. A protein structure analysis was performed to assess the functional impact of the variant, and a mutant plasmid was constructed for the quantitative polymerase chain reaction (qPCR) and western blot (WB) analysis of the effects of the variant on transcription and protein translation. RESULTS: The patient harbored the NM_000188.3: c.613del (p.Ala205Leufs*3) variant, which is a heterozygous variant of HK1. Sanger sequencing confirmed the presence of this variant in the patient; however, the patient's parents and brother had the wild-type variant. The protein structure analysis indicated that the variant resulted in a truncated protein caused by premature termination of amino acid coding. The qPCR results indicated that the variant may not have affected the transcription process. However, the WB analysis demonstrated that the mutant HK-1 protein was not expressed and that the wild-type group exhibited normal expression. CONCLUSIONS: Our patient had a loss-of-function (LoF) variant of HK1, which may be the genetic cause of typical features of RP that are observed at an early age. These findings expand the spectrum of HK1 variants and phenotypes and suggest that LoF variants of HK1 may represent a specific pathogenic mechanism of RP.

4.
Mol Genet Genomic Med ; 12(10): e70016, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359128

RESUMO

OBJECTIVE: To investigate the clinical value of whole-exome sequencing (WES) in the diagnosis of foetuses with central nervous system (CNS) abnormalities but having a normal karyotyping and chromosomal microarray result. METHOD: During the period of 2016-2022, there were a total of 149 foetuses with CNS abnormalities but having negative karyotyping and chromosomal microarray analysis results; WES was performed on these foetuses and their parents. Variants were classified according to ACMG guidelines, and the association of pathogenic variants with specific types of CNS abnormalities was explored. RESULTS: Among these 149 foetuses, three categories of abnormalities, namely, single CNS abnormality, multiple CNS abnormalities, CNS abnormalities along with other organ system abnormalities were identified, for which the detection rate of P/LP variants is 17.4% (12/69), 28.6% (14/49) and 54.8% (17/31), respectively. CONCLUSION: WES brought about an increase of 28.9% in diagnostic yield in the prenatal evaluation of foetuses with CNS abnormalities but having negative karyotyping and chromosome array results. WES may also be of benefit for the diagnosis of foetuses with isolated CNS abnormalities, as well as for making more informed interpretations of imaging findings and for providing better genetic counselling.


Assuntos
Sequenciamento do Exoma , Diagnóstico Pré-Natal , Humanos , Feminino , Sequenciamento do Exoma/métodos , Gravidez , Diagnóstico Pré-Natal/métodos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/diagnóstico , Adulto , Testes Genéticos/métodos , Feto/anormalidades , Sistema Nervoso Central/anormalidades , Cariotipagem/métodos
5.
BMC Pediatr ; 24(1): 631, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363269

RESUMO

BACKGROUND: X-linked intellectual disability-hypotonic facies syndrome-1 (MRXHF1) and Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome are caused by pathogenic variant in the ATRX gene, a member of the switch/sucrose non-fermentable (SWI-SNF) protein family that exhibits chromatin remodeling activity. These syndromes show a wide spectrum of clinical manifestations, such as distinctive dysmorphic features, mild-to-profound intellectual disability, motor development delay, seizures, urogenital abnormalities, and gastrointestinal disorders. CASE PRESENTATION AND LITERATURE REVIEW: A 3-year-old boy from a Chinese non-consanguineous family was diagnosed with MRXHF1 by whole-exome sequencing. Comprehensive family history information was obtained. The Medline database was searched until 1st Aug 2023 for articles related to ATRX pathogenic variant. Data on gene/protein mutations and clinical symptoms were extracted. The proband showed intellectual disability, motor development delay, typical facial abnormalities, urogenital defect, behavior problems, and optical nerve dysplasia. A novel frameshift mutation c.399_400dup, (p.Leu134Cysfs*2) in the ATRX gene was the primary cause, which occurs right before the ATRXDNMT3-DNMT3L (ADD) domain of ATRX protein. Missense mutation is the most common variation type. The ADD and helicase-like domains are the most frequently affected domains. Epilepsy, congenital heart disease, urogenital defect, acoustic defect, and optical defect are more prevalent in patients with frameshift mutations compared to those with missense mutations. There are more urogenital defects with C-terminal frameshift mutations than with N-terminal frameshift mutations. CONCLUSION: We described a novel frameshift mutation in the ATRX gene in a patient with MRXHF1 syndrome and summarized the genotype-phenotype relationship of ATRX pathogenic variant by variation type and affected protein domain. The regulatory mechanism underlying ATRX variant requires comprehensive analysis in future studies.


Assuntos
Mutação da Fase de Leitura , Proteína Nuclear Ligada ao X , Humanos , Masculino , Proteína Nuclear Ligada ao X/genética , Pré-Escolar , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Talassemia alfa/genética , Talassemia alfa/diagnóstico , Estudos de Associação Genética , Fenótipo , Sequenciamento do Exoma
6.
Prenat Diagn ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363392

RESUMO

OBJECTIVE: To investigate the association of agenesis of the ductus venosus (ADV) with genetic abnormalities using genetic studies-Chromosomal Microarray Analysis (CMA) and Exome Sequencing (ES). DESIGN: Retrospective study of all fetuses diagnosed with ADV between January 2013 and December 2022 in a tertiary center. RESULTS: ADV was diagnosed in 33 fetuses. The diagnosis was made at a mean gestational age of 21.2 ± 8.4 weeks. Conventional karyotype was applied in a single fetus (3.0%), CMA was applied in 21 fetuses (66.7%), and five fetuses (22.8%) were additionally tested with ES. ADV was isolated in eight fetuses (24%), whereas in 25 (76%) it was associated with abnormal ultrasound findings, including increased nuchal translucency (NT), intrauterine growth restriction (IUGR) and variable structural malformations, mostly cardiac (42%) followed by central nervous system (CNS) and skeletal malformations (24%). Genetic abnormalities were found in six fetuses out of 22 investigated (27%), of which 3 were detected by ES, 3 by CMA and 1 by conventional karyotype. A higher incidence of genetic aberrations was evident among ADVs associated with abnormal ultrasound findings. Genetic abnormalities were indicative of Prader Willi/Angelman syndrome, Noonan syndrome, CASK related disorder, 16q24.3 microdeletion syndrome and Trisomy 21. CONCLUSION: ADV associated with abnormal ultrasound findings is commonly correlated with genetic abnormalities and consequently unfavorable pregnancy outcomes. Our study emphasizes the value of genetic studies chiefly among cases associated with abnormal ultrasound findings, enabling early diagnosis of fetal pathologies associated with ADV, and providing better parental counseling.

7.
J Diabetes Res ; 2024: 3076895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364395

RESUMO

Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a ß-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Sequenciamento do Exoma , Predisposição Genética para Doença , Humanos , Diabetes Mellitus Tipo 1/genética , Pré-Escolar , Feminino , Masculino , Fator 1-beta Nuclear de Hepatócito/genética , Transativadores/genética , Proteínas de Homeodomínio/genética , Fator 4 Nuclear de Hepatócito/genética , Quinases do Centro Germinativo/genética , Polimorfismo de Nucleotídeo Único , Lactente , Peptídeo C/sangue , Autoanticorpos , Criança , Haplótipos , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Fatores de Transcrição de Fator Regulador X
8.
Front Med (Lausanne) ; 11: 1442107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359914

RESUMO

Introduction: In Japan, inherited retinal dystrophy caused by biallelic variants of the RPE65 gene is exceedingly rare. The purpose of this study was to describe a Japanese male patient with a novel variant in RPE65 associated with Leber congenital amaurosis (LCA). Case report: The patient, diagnosed with LCA, exhibited infantile nystagmus and reported experiencing night blindness since early childhood. At 27 years of age, the patient underwent an ophthalmologically evaluation. Corrected visual acuity was Snellen equivalent 20/133 in the right eye and Snellen equivalent 20/100 in the left eye. Fundus examination revealed alterations in the retinal pigment epithelium characterized by hypopigmentation and narrowing of retinal vessels. Fundus autofluorescence imaging demonstrated a generally diminished autofluorescent signal. Full-field electroretinography identified a generalized dysfunction of both rod and cone systems in each eye. Whole exome sequencing identified a novel missense variant in RPE65 (NM_000329.3): c.1172C > A p.(Ala391Asp), which was classified as pathogenic, as well as a recurrent variant p.(Arg515Trp). Conclusion: This study provides valuable insights into the genotype-phenotype correlation of RPE65-associated LCA in Japanese patients, with critical implications for enhanced diagnostic accuracy and informed therapeutic decisions.

9.
Mol Syndromol ; 15(5): 355-361, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359945

RESUMO

Background: Spondyloepiphyseal dysplasia (SED) is characterized by skeletal dysplasia and multiple joint dislocations. SEDs encompass various types, such as SED congenita, SED tarda (SED-T), SED with congenital joint dislocations (SED-CJD), SED stanescu, and SED-T with progressive arthropathy. Methods and Results: In the present study, we clinically and genetically characterized a consanguineous Pakistani family with SED-CJD. The affected member showed large joint dislocation, spinal deformities, and previously unreported facial features. Exome sequencing followed by Sanger sequencing revealed a missense variant, [c.601T>A; p.(Tyr201Asn)], in the CHST3. Conclusion: This study has not only expended the mutation spectrum in the gene CHST3 but also will facilitate diagnosis and genetic counseling of related features in the Pakistani population.

10.
Mol Syndromol ; 15(5): 380-388, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359950

RESUMO

Introduction: Peroxisome biogenesis disorders (PBDs) encompass a group of diseases marked by clinical and genetic heterogeneity. Phenotypes linked to PBDs include Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease (IRD), rhizomelic chondrodysplasia punctata type 1, and Heimler syndrome. PBD phenotypes manifest through hypotonia, developmental delay, facial dysmorphism, seizures, liver dysfunction, sensorineural hearing loss, and retinal dystrophy. Methods: The proband underwent comprehensive clinical evaluation, followed by whole-exome sequencing (WES) coupled with copy number analysis (CNV), aimed at identifying potential disease-causing variants aligning with the observed phenotype. Results: Our findings detail an individual exhibiting developmental delay, hearing loss, visual impairment, hepatomegaly, and splenomegaly, attributed to a biallelic deletion of exon 4 in the PEX26 gene. The WES analysis of the index case did not uncover any pathogenic/likely pathogenic single-nucleotide variations that could account for the observed clinical findings. However, the CNV data derived from WES revealed a homozygous deletion in exon 4 of the PEX26 gene (NM_001127649.3), providing a plausible explanation for the patient's clinical features. The exon 4 region of PEX26 encodes the transmembrane domain of the protein. The transmembrane domain plays a crucial role in anchoring the protein within lipid bilayers, and its absence can disrupt proper localization and functioning. As a result, this structural alteration may impact the protein's ability to facilitate essential cellular processes related to peroxisome biogenesis and function. Conclusion: The index patient, which presented with hearing loss, retinal involvement and hepatic dysfunction in adolescence age, has atypical clinical course that can be considered unusual for Zellweger syndrome (ZS) and IRD phenotypes, and its rare genotypic data (in-frame single exon deletion) expands the PBD disease spectrum. This study revealed for the first time that PEX26 protein transmembrane domain loss exhibits an unusual course with clinical findings of IRD and ZS phenotypes. WES studies, incorporating CNV analyses, empower the identification of novel genetic alterations in genes seldom associated with gross deletion/duplication variations, such as those in the PEX26 gene. This not only enhances diagnostic rates in rare diseases but also contributes to broadening the spectrum of causal mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA