Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.070
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125955

RESUMO

BACKGROUND: Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS: Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION: Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Família Multigênica , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Vaccinium/genética , Vaccinium/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 14(1): 17855, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090142

RESUMO

Breeding high yielding water-deficit tolerant rice is considered a primary goal for achieving the objectives of the sustainable development goals, 2030. However, evaluating the performance of the pre-breeding-promising parental-lines for water deficit tolerance prior to their incorporation in the breeding program is crucial for the success of the breeding programs. The aim of the current investigation is to assess the performance of a set of pre-breeding lines compared with their parents. To achieve this goal a set of 7 pre-breeding rice lines along with their parents (5 genotypes) were field evaluated under well-irrigated and water-stress conditions. Water stress was applied by flush irrigation every 12 days without keeping standing water after irrigation. Based on the field evaluation results, a pre-breeding line was selected to conduct physiological and expression analysis of drought related genes at the green house. Furthermore, a greenhouse trial was conducted in pots, where the genotypes were grown under well and stress irrigation conditions at seedling stage for physiological analysis and expression profiling of the genotypes. Results indicated that the pre-breeding lines which were high yielding under water shortage stress showed low drought susceptibility index. Those lines exhibited high proline, SOD, TSS content along with low levels of MDA content in their leaves. Moreover, the genotypes grain yield positively correlated with proline, SOD, TSS content in their leaves. The SSR markers RM22, RM525, RM324 and RM3805 were able to discriminate the tolerant parents from the sensitive one. Expression levels of the tested drought responsive genes revealed the upregulation of OsLEA3, OsAPX2, OsNAC1, OSDREB2A, OsDREB1C, OsZIP23, OsP5CS, OsAHL1 and OsCATA genes in response to water deficit stress as compared to their expression under normal irrigated condition. Taken together among the tested pre-breeding lines the RBL112 pre-breeding line is high yielding under water-deficit and could be used as donor for high yielding genes in the breeding for water deficit resistance. This investigation withdraws attention to evaluate the promising pre-breeding lines before their incorporation in the water deficit stress breeding program.


Assuntos
Desidratação , Regulação da Expressão Gênica de Plantas , Oryza , Melhoramento Vegetal , Oryza/genética , Desidratação/genética , Melhoramento Vegetal/métodos , Secas , Genótipo , Perfilação da Expressão Gênica , Água/metabolismo , Transcriptoma , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Epigenetics Chromatin ; 17(1): 24, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103936

RESUMO

BACKGROUND: Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant. RESULTS: DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites. CONCLUSIONS: To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.


Assuntos
Metilação de DNA , Transcriptoma , Emissões de Veículos , Humanos , Metilação de DNA/efeitos dos fármacos , Emissões de Veículos/toxicidade , Células A549 , Transcriptoma/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Ilhas de CpG , Material Particulado/toxicidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo
4.
Oncoimmunology ; 13(1): 2384667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108501

RESUMO

Deficient (d) DNA mismatch repair (MMR) is a biomarker predictive of better response to PD-1 blockade immunotherapy in solid tumors. dMMR can be caused by mutations in MMR genes or by protein inactivation, which can be detected by sequencing and immunohistochemistry, respectively. To investigate the role of dMMR in diffuse large B-cell lymphoma (DLBCL), MMR gene mutations and expression of MSH6, MSH2, MLH1, and PMS2 proteins were evaluated by targeted next-generation sequencing and immunohistochemistry in a large cohort of DLBCL patients treated with standard chemoimmunotherapy, and correlated with the tumor immune microenvironment characteristics quantified by fluorescent multiplex immunohistochemistry and gene-expression profiling. The results showed that genetic dMMR was infrequent in DLBCL and was significantly associated with increased cancer gene mutations and favorable immune microenvironment, but not prognostic impact. Phenotypic dMMR was also infrequent, and MMR proteins were commonly expressed in DLBCL. However, intratumor heterogeneity existed, and increased DLBCL cells with phenotypic dMMR correlated with significantly increased T cells and PD-1+ T cells, higher average nearest neighbor distance between T cells and PAX5+ cells, upregulated immune gene signatures, LE4 and LE7 ecotypes and their underlying Ecotyper-defined cell states, suggesting the possibility that increased T cells targeted only tumor cell subsets with dMMR. Only in patients with MYC¯ DLBCL, high MSH6/PMS2 expression showed significant adverse prognostic effects. This study shows the immunologic and prognostic effects of genetic/phenotypic dMMR in DLBCL, and raises a question on whether DLBCL-infiltrating PD-1+ T cells target only tumor subclones, relevant for the efficacy of PD-1 blockade immunotherapy in DLBCL.


Assuntos
Reparo de Erro de Pareamento de DNA , Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Reparo de Erro de Pareamento de DNA/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Masculino , Feminino , Mutação , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Adulto , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Neuroscience ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39097181

RESUMO

Understanding the intricate mechanisms underlying memory formation and retention relies on unraveling how the hippocampus, a structure fundamental for memory acquisition, is organized. Within the complex hippocampal network, interneurons play a crucial role in orchestrating memory processes. Among these interneurons, Oriens-Lacunosum Moleculare (OLM) cells emerge as key regulators, governing the flow of information to CA1 pyramidal cells. In this review, we explore OLM interneurons in detail, describing their mechanisms and effects on memory processing, particularly in spatial and contextual memory tasks. Our aim is to provide a detailed understanding of how OLM interneurons contribute to the dynamic landscape of memory formation and retrieval.

6.
Respir Res ; 25(1): 310, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143598

RESUMO

BACKGROUND: The genetic signatures associated with the susceptibility to nontuberculous mycobacterial pulmonary disease (NTM-PD) are still unknown. In this study, we performed RNA sequencing to explore gene expression profiles and represent characteristic factor in NTM-PD. METHODS: Peripheral blood samples were collected from patients with NTM-PD and healthy individuals (controls). Differentially expressed genes (DEGs) were identified by RNA sequencing and subjected to functional enrichment and immune cell deconvolution analyses. RESULTS: We enrolled 48 participants, including 26 patients with NTM-PD (median age, 58.0 years; 84.6% female), and 22 healthy controls (median age, 58.5 years; 90.9% female). We identified 21 upregulated and 44 downregulated DEGs in the NTM-PD group compared to those in the control group. NTM infection did not have a significant impact on gene expression in the NTM-PD group compared to the control group, and there were no differences in the proportion of immune cells. However, through gene ontology (GO), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) analysis, we discovered that PARK2 is a key factor associated with NTM-PD. The PARK2 gene, which is linked to the ubiquitination pathway, was downregulated in the NTM-PD group (fold change, - 1.314, P = 0.047). The expression levels of PARK2 remained unaltered after favorable treatment outcomes, suggesting that the gene is associated with host susceptibility rather than with the outcomes of infection or inflammation. The area under the receiver operating characteristic curve for the PARK2 gene diagnosing NTM-PD was 0.813 (95% confidence interval, 0.694-0.932). CONCLUSION: We identified the genetic signatures associated with NTM-PD in a cohort of Korean patients. The PARK2 gene presents as a potential susceptibility factor in NTM-PD .


Assuntos
Predisposição Genética para Doença , Infecções por Mycobacterium não Tuberculosas , Ubiquitina-Proteína Ligases , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Predisposição Genética para Doença/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Pneumopatias/genética , Pneumopatias/microbiologia , Pneumopatias/diagnóstico
7.
Sci Rep ; 14(1): 18576, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127727

RESUMO

Repurposing of FDA-approved drugs is a quick and cost-effective alternative to de novo drug development. Here, we identify genes involved in bortezomib sensitivity, predict cancer types that may benefit from treatment with bortezomib, and evaluate the mechanism-of-action of bortezomib in breast cancer (BT-474 and ZR-75-30), melanoma (A-375), and glioblastoma (A-172) cells in vitro. Cancer cell lines derived from cancers of the blood, kidney, nervous system, and skin were found to be significantly more sensitive to bortezomib than other organ systems. The in vitro studies confirmed that although bortezomib effectively inhibited the ß5 catalytic site in all four cell lines, cell cycle arrest was only induced in G2/M phase and apoptosis in A-375 and A-172 after 24h. The genomic and transcriptomic analyses identified 33 genes (e.g. ALDH18A1, ATAD2) associated with bortezomib resistance. Taken together, we identified biomarkers predictive of bortezomib sensitivity and cancer types that might benefit from treatment with bortezomib.


Assuntos
Antineoplásicos , Bortezomib , Reposicionamento de Medicamentos , Neoplasias Hematológicas , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Reposicionamento de Medicamentos/métodos , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Multiômica
8.
Sci Rep ; 14(1): 15313, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961125

RESUMO

Epileptogenesis is the process by which a normal brain becomes hyperexcitable and capable of generating spontaneous recurrent seizures. The extensive dysregulation of gene expression associated with epileptogenesis is shaped, in part, by microRNAs (miRNAs) - short, non-coding RNAs that negatively regulate protein levels. Functional miRNA-mediated regulation can, however, be difficult to elucidate due to the complexity of miRNA-mRNA interactions. Here, we integrated miRNA and mRNA expression profiles sampled over multiple time-points during and after epileptogenesis in rats, and applied bi-clustering and Bayesian modelling to construct temporal miRNA-mRNA-mRNA interaction networks. Network analysis and enrichment of network inference with sequence- and human disease-specific information identified key regulatory miRNAs with the strongest influence on the mRNA landscape, and miRNA-mRNA interactions closely associated with epileptogenesis and subsequent epilepsy. Our findings underscore the complexity of miRNA-mRNA regulation, can be used to prioritise miRNA targets in specific systems, and offer insights into key regulatory processes in epileptogenesis with therapeutic potential for further investigation.


Assuntos
Epilepsia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , RNA Mensageiro , Convulsões , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Convulsões/genética , Convulsões/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Masculino , Regulação da Expressão Gênica , Teorema de Bayes , Modelos Animais de Doenças , Transcriptoma
9.
Front Oncol ; 14: 1407217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070144

RESUMO

Introduction: Colorectal cancer (CRC) ranks as the third most prevalent malignancy globally, with a concerning rise in incidence among young adults. Despite progress in understanding genetic predispositions and lifestyle risk factors, the intricate molecular mechanisms of CRC demand exploration. MicroRNAs (miRNAs) emerge as key regulators of gene expression and their deregulation in tumor cells play pivotal roles in cancer progression. Methods: NanoString's nCounter technology was utilized to measure the expression of 827 cancer-related miRNAs in tumor tissue and adjacent non-involved normal colon tissue from five patients with locoregional CRC progression. These expression profiles were then compared to those from the primary colon adenocarcinoma (COAD) cohort in The Cancer Genome Atlas (TCGA). Results and discussion: Intriguingly, 156 miRNAs showed a contrasting dysregulation pattern in reccurent tumor compared to their expression in the TCGA COAD cohort. This observation implies dynamic alterations in miRNA expression patterns throughout disease progression. Our exploratory study contributes to understanding the regulatory landscape of recurrent CRC, emphasizing the role of miRNAs in disease relapse. Notable findings include the prominence of let-7 miRNA family, dysregulation of key target genes, and dynamic changes in miRNA expression patterns during progression. Univariate Cox proportional hazard models highlighted miRNAs associated with adverse outcomes and potential protective factors. The study underscores the need for more extensive investigations into miRNA dynamics during tumor progression and the value of stage specific biomarkers for prognosis.

10.
Cureus ; 16(6): e63173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39070514

RESUMO

The Endometrial Receptivity Array (ERA) is a revolutionary molecular diagnostic tool that determines the optimal timing for embryo transfer by analyzing the gene expression profile of endometrial tissue. This comprehensive review examines the significance and application of ERA in euploid embryo transfer cycles, where the implantation of embryos with the correct number of chromosomes is critical for achieving successful pregnancy outcomes. This review underscores its role in enhancing implantation rates and reducing pregnancy loss by assessing the evolution, methodology, clinical applications, efficacy, and challenges associated with ERA. Key findings highlight ERA's superior accuracy in identifying the window of implantation compared to traditional methods, resulting in improved clinical outcomes in assisted reproductive technology (ART) cycles. Despite its benefits, the review acknowledges challenges such as cost, accessibility, and the need for standardization. Recommendations for clinical practice emphasize the integration of ERA into routine ART protocols, comprehensive patient counseling, and the importance of multidisciplinary collaboration. The review outlines promising prospects, including technological advancements to make ERA more cost-effective, the development of refined gene expression profiles, and the potential integration with other emerging ART technologies. Further research directions include long-term studies on the outcomes of ERA-guided pregnancies and exploring its application in cases of recurrent implantation failure and unexplained infertility. Overall, ERA represents a significant advancement in reproductive medicine, offering a personalized approach to embryo transfer timing that can significantly improve the success rates of euploid embryo transfers.

11.
J Integr Neurosci ; 23(7): 141, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39082286

RESUMO

BACKGROUND: Hypoxic-ischemic injury of neurons is a pathological process observed in several neurological conditions, including ischemic stroke and neonatal hypoxic-ischemic brain injury (HIBI). An optimal treatment strategy for these conditions remains elusive. The present study delved deeper into the molecular alterations occurring during the injury process in order to identify potential therapeutic targets. METHODS: Oxygen-glucose deprivation/reperfusion (OGD/R) serves as an established in vitro model for the simulation of HIBI. This study utilized RNA sequencing to analyze rat primary hippocampal neurons that were subjected to either 0.5 or 2 h of OGD, followed by 0, 9, or 18 h of reperfusion. Differential expression analysis was conducted to identify genes dysregulated during OGD/R. Time-series analysis was used to identify genes exhibiting similar expression patterns over time. Additionally, functional enrichment analysis was conducted to explore their biological functions, and protein-protein interaction (PPI) network analyses were performed to identify hub genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for validation of hub-gene expression. RESULTS: The study included a total of 24 samples. Analysis revealed distinct transcriptomic alterations after OGD/R processes, with significant dysregulation of genes such as Txnip, Btg2, Egr1 and Egr2. In the OGD process, 76 genes, in two identified clusters, showed a consistent increase in expression; functional analysis showed involvement of inflammatory responses and signaling pathways like tumor necrosis factor (TNF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and interleukin 17 (IL-17). PPI network analysis suggested that Ccl2, Jun, Cxcl1, Ptprc, and Atf3 were potential hub genes. In the reperfusion process, 274 genes, in three clusters, showed initial upregulation followed by downregulation; functional analysis suggested association with apoptotic processes and neuronal death regulation. PPI network analysis identified Esr1, Igf-1, Edn1, Hmox1, Serpine1, and Spp1 as key hub genes. qRT-PCR validated these trends. CONCLUSIONS: The present study provides a comprehensive transcriptomic profile of an in vitro OGD/R process. Key hub genes and pathways were identified, offering potential targets for neuroprotection after hypoxic ischemia.


Assuntos
Hipóxia-Isquemia Encefálica , Neurônios , Transcriptoma , Animais , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/genética , Ratos , Neurônios/metabolismo , Hipocampo/metabolismo , Ratos Sprague-Dawley , Glucose/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Mapas de Interação de Proteínas
12.
Genes Genomics ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083157

RESUMO

BACKGROUND: Schizophrenia is a mental disorder that causes considerable morbidity, whose risk largely results from genetic factors. Setd1a is a gene implicated in schizophrenia. OBJECTIVE: To study the gene expression changes found in heterozygous Setd1a± knockout mice in order to gain useful insight into schizophrenia pathogenesis. METHODS: We mined a single-cell RNA sequencing (scRNAseq) dataset from the prefrontal cortex (PFC) and striatum of Setd1a± mice and identified cell type-specific differentially expressed genes (DEGs) and differential transcript usage (DTU). DEGs and genes containing DTU found in each cell type were used to identify affected biological pathways using Ingenuity Pathway Analysis (IPA). RESULTS: We identified 273 unique DEGs across all cell types in PFC and 675 unique gene peaks containing DTU. In striatum, we identified 327 unique DEGs across all cell types and 8 unique gene peaks containing DTU. Key IPA findings from the analysis of DEGs found in PFC and striatum implicate processes involved in protein synthesis, mitochondrial function, cell metabolism, and inflammation. IPA analysis of genes containing DTU in PFC points to protein synthesis, as well as cellular activities involving intracellular signaling and neurotransmission. One canonical pathway, 'EIF2 Signaling', which is involved in the regulation of protein synthesis, was detected in PFC DEGs, striatum DEGs, and PFC genes containing DTU, drawing attention to its importance in schizophrenia pathophysiology. CONCLUSION: Processes involving protein synthesis in general and the 'EIF2 Signaling' pathway in particular could be targets for the development of new research strategies and biomarkers in schizophrenia.

13.
Cardiovasc Diabetol ; 23(1): 278, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080630

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are commonly coexisting clinical entities with still growing incidence worldwide. Recently, circulating microRNAs (miRNAs) have emerged as novel molecular players in cardiometabolic diseases. This study aimed to identify a specific miRNA signature as a candidate biomarker for CAD in T2DM and to delineate potential miRNA-dependent mechanisms contributing to diabetic atherosclerosis. METHODS: A total of 38 plasma samples from T2DM patients with and without CAD, CAD patients and healthy controls were collected for expression profiling of 2,578 miRNAs using microarrays. To investigate the regulatory role of differentially expressed (DE)-miRNA target genes, functional annotation and pathway enrichment analyses were performed utilizing multiple bioinformatics tools. Then, protein-protein interaction networks were established leveraging the STRING database in Cytoscape software, followed by cluster analysis and hub gene identification. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was carried out for microarray data validation in the larger replication cohort of 94 participants. Receiver operating characteristic analysis was applied to evaluate the diagnostic values of miRNAs. Multivariate logistic regression analysis was used to develop miRNA-based diagnostic models. RESULTS: In the discovery stage, overexpression of hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-6846-5p, and down-regulation of hsa-miR-3613-3p, hsa-miR-4668-5p, hsa-miR-4706, hsa-miR-6511b-5p, hsa-miR-6750-5p, hsa-miR-4750-3p, hsa-miR-320e, hsa-miR-4717-3p, hsa-miR-7850-5p were detected in T2DM-CAD patients. The DE-miRNA target genes were significantly enriched in calcium ion binding, regulation of actin cytoskeleton, and gene expression. hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p were found to be involved in fatty acid metabolism, leukocyte transendothelial migration, and neurotrophin signaling pathway. Dysregulation of hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p in T2DM-CAD patients compared with T2DM subjects and controls (all p < 0.001) was further confirmed by RT-qPCR. All validated miRNAs demonstrated good discriminatory values for T2DM-CAD (AUC = 0.833-0.876). The best performance in detecting CAD in T2DM was achieved for a combination of three miRNAs (AUC = 0.959, 100% sensitivity, 86.67% specificity). CONCLUSIONS: Our study revealed a unique profile of plasma-derived miRNAs in T2DM patients with CAD. Potential miRNA-regulated pathways were also identified, exploring the underlying pathogenesis of CAD in T2DM. We developed a specific three-miRNA panel of hsa-miR-4505, hsa-miR-4743-5p and hsa-miR-4750-3p, that could serve as a novel non-invasive biomarker for CAD in patients with T2DM.


Assuntos
MicroRNA Circulante , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , Valor Preditivo dos Testes , Mapas de Interação de Proteínas , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Estudos de Casos e Controles , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/diagnóstico , MicroRNAs/sangue , MicroRNAs/genética , Masculino , Pessoa de Meia-Idade , Feminino , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Idoso , Reprodutibilidade dos Testes , Análise de Sequência com Séries de Oligonucleotídeos , Marcadores Genéticos , Transcriptoma , Biologia Computacional , Biomarcadores/sangue
14.
Front Oncol ; 14: 1386097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011470

RESUMO

3D cancer cell cultures have enabled new opportunities for replacing compound testing in experimental animals. However, most solid tumors are composed of multiple cell types, including fibroblasts. In this study we developed multicellular tumor heterospheroids composed of cancer and fibroblasts cell lines. We developed heterospheroids by combining HT-29, MCF-7, PANC-1 or SW480 with 1BR.3.G fibroblasts, which we have previously reported support spheroid formation. We also tested fibroblast cell lines, MRC-5, GM00498 and HIF, but 1BR.3.G was found to best form heterospheroids with morphological similarity to in vivo tumor tissue. The architectural organization of heterospheroids was based on histological examination using immunohistochemistry. We found that HT-29 and MCF-7 cells developed spheroids with the cancer cells surrounding the fibroblasts, whereas PANC-1 cells interspersed with the fibroblasts and SW480 cells were surrounded by fibroblasts. The fibroblasts also expressed collagen-1 and FAP-α, and whole transcriptomic analysis (WTA) showed abundant ECM- and EMT-related expression in heterospheroids, thus reflecting a representative tumor-like microenvironment. The WTA showed that PANC-1 heterospheroids possess a strong EMT profile with abundant Vimentin and CDH2 expression. Drug testing was evaluated by measuring cytotoxicity of 5FU and cisplatin using cell viability and apoptosis assays. We found no major impact on the cytotoxicity when fibroblasts were added to the spheroids. We conclude that the cancer cell lines together with fibroblasts shape the architectural organization of heterospheroids to form tumor-like morphology, and we propose that the various 3D tumor structures can be used for drug testing directed against the cancer cells as well as the fibroblasts.

15.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063230

RESUMO

N6-methyladenosine (m6A) RNA modification is the most prevalent form of RNA methylation and plays a crucial role in plant development. However, our understanding of m6A modification in Masson pine (Pinus massoniana Lamb.) remains limited. In this study, a complete analysis of m6A writers, erasers, and readers in Masson pine was performed, and 22 m6A regulatory genes were identified in total, including 7 m6A writers, 7 m6A erases, and 8 readers. Phylogenetic analysis revealed that all m6A regulators involved in Masson pine could be classified into three distinct groups based on their domains and motifs. The tissue expression analysis revealed that the m6A regulatory gene may exert a significant influence on the development of reproductive organs and leaves in Masson pine. Moreover, the results from stress and hormone expression analysis indicated that the m6A regulatory gene in Masson pine might be involved in drought stress response, ABA-signaling-pathway activation, as well as resistance to Monochamus alternatus. This study provided valuable and anticipated insights into the regulatory genes of m6A modification and their potential epigenetic regulatory mechanisms in Masson pine.


Assuntos
Adenosina , Regulação da Expressão Gênica de Plantas , Filogenia , Pinus , Estresse Fisiológico , Transcriptoma , Pinus/genética , Pinus/metabolismo , Estresse Fisiológico/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Epigênese Genética
16.
Biochimie ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047810

RESUMO

The mineral iron plays a crucial role in facilitating the optimal functioning of numerous biological processes within the cellular environment. These processes involve the transportation of oxygen, energy production, immune system functioning, cognitive abilities, and muscle function. However, it is crucial to note that excessive levels of iron can result in oxidative damage within cells, primarily through Fenton reactions. Iron availability and toxicity present significant challenges that have been addressed through evolution. Ferritin is an essential protein that stores iron and is divided into different subfamilies, including DNA-binding proteins under starvation (Dps), bacterioferritin, and classical ferritin. Ferritin plays a critical role in maintaining cellular balance and protecting against oxidative damage. This study delves into ferritin's evolutionary dynamics across diverse taxa, emphasizing structural features and regulatory mechanisms. Insights into ferritin's evolution and functional diversity are gained through phylogenetic and structural analysis in bacterial Dps, bacterioferritin, and classical ferritin proteins. Additionally, the involvement of ferritin in plant stress responses and development is explored. Analysis of ferritin gene expression across various developmental stages and stress conditions provides insights into its regulatory roles. This comprehensive exploration enhances our understanding of ferritin's significance in plant biology, offering insights into its evolutionary history, structural diversity, and protective mechanisms against oxidative stress.

17.
Gene ; 928: 148789, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047956

RESUMO

BACKGROUND: The expression profiles of placental genes are crucial for understanding the pathogenesis of fetal development and placental-origin pregnancy syndromes. However, owing to ethical limitations and the risks of puncture sampling, it is difficult to obtain placental tissue samples repeatedly, continuously, multiple times, or in real time. Establishing a non-invasive method for predicting placental gene expression profiles through maternal plasma cell-free DNA (cfDNA) sequencing, which carries information about the source tissue and gene expression, can potentially solve this problem. METHODS: Peripheral blood and placental samples were collected simultaneously from pregnant women who underwent cesarean section. Deep sequencing was performed on the separated plasma cfDNA and single-cell sequencing was performed on peripheral blood mononuclear cells (PBMC), chorioamniotic membranes (CAM), placental villi (PV), and decidua basalis (DB). The aggregation of corresponding information for each gene was combined with the transcriptome of PBMCs and a differential resolution transcriptome of the placenta. This combined information was then utilized for the construction of gene expression prediction models. After training, all models evaluated the correlation between the predicted and actual gene expression levels using external test set data. RESULTS: From five women, more than 20 million reads were obtained using deep sequencing for plasma cfDNA; PBMCs obtained 32,401 single-cell expression profiles; and placental tissue obtained 156,546 single-cell expression profiles (59,069, 44,921, and 52,556 for CAM, PV, and DB, respectively). The cells in the PBMC and placenta were clustered and annotated into five and eight cell types, respectively. A "DEPICT" gene expression prediction model was successfully constructed using deep neural networks. The predicted correlation coefficients were 0.75 in PBMCs, 0.84 in the placenta, and 0.78, 0.80, and 0.77 in CAM, BP, and PV respectively, and greater than 0.68 in different cell lines in the placenta. CONCLUSION: The DEPICT model, which can noninvasively predict placental gene expression profiles based on maternal plasma cfDNA fragmentation characteristics, was constructed to overcome the limitation of the inability to obtain real-time placental gene expression profiles and to improve research on noninvasive prediction of placental origin pregnancy syndrome.


Assuntos
Ácidos Nucleicos Livres , Leucócitos Mononucleares , Placenta , Humanos , Gravidez , Feminino , Ácidos Nucleicos Livres/genética , Placenta/metabolismo , Adulto , Leucócitos Mononucleares/metabolismo , Fragmentação do DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos
18.
Mol Biotechnol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38951481

RESUMO

The morbidity of oral squamous cell carcinoma (OSCC) has been rising year after year, making it a major global health issue. But the molecular pathogenesis of OSCC is currently unclear. To study the potential pathogenesis of OSCC, the differentially expressed genes (DEGs) were screened, and multiple databases were used to perform the tumor stage, expression, prognosis, protein-protein interaction (PPI) networks, modules, and the functional enrichment analysis. Moreover, we have identified SP110 as the key candidate gene and conducted various analyses on it using multiple databases. The research indicated that there were 211 common DEGs, and they were enriched in various GO terms and pathways. Meanwhile, one DEG is significantly related to short disease-free survival, four are associated with overall survival, and 12 DEGs have close ties with tumor staging. Additionally, the SP110 is significantly associated with methylation level, HPV status, tumor staging, gender, race, tumor grade, age, and overall/disease-free survival of oral cancer patients, as well as the immune process. The copy number variation of SP110 significantly affected the abundance of immune infiltration. Therefore, we speculate that SP110 could be used as the diagnostic and therapeutic biomarker for OSCC, and can help to further understand oral carcinogenesis.

19.
JCI Insight ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053472

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by a deleterious CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological poly-Q-ataxin-7 mutant ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and, investigated the XII and phrenic nerve and the neuromuscular junctions in the diaphragm and tongue. SCA-7 astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transportation and myelination. Additionally, SCA7 mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of NMJ clusters with higher expression of synaptic markers in SCA7 mice compared to WT controls. These pre-clinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration and respiratory failure in infantile SCA7.

20.
Insects ; 15(7)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39057242

RESUMO

Sugar transporters play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells in numerous organisms. In insects, sugar transporters not only play a role in sugar transport but may also act as receptors for virus entry and the accumulation of plant defense compounds. The brown planthopper, Nilaparvata lugens, inflicts damage on rice plants by feeding on their phloem sap, which is rich in sugars. In the present study, we identified 34 sugar transporters in N. lugens, which were classified into three subfamilies based on phylogenetic analysis. The motif numbers varied from seven to eleven, and motifs 2, 3, and 4 were identified in the functional domains of all 34 NlST proteins. Chromosome 1 was found to possess the highest number of NlST genes, harboring 15. The gut, salivary glands, fat body, and ovary were the different tissues enriched with NlST gene expression. The expression levels of NlST2, 3, 4, 7, 20, 27, 28, and 31 were higher in the gut than in the other tissues. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST4 (previously characterized) and NlST4, 28, and 31 were found to transport glucose and fructose, resulting in functional rescue of the yeast mutant. These results provide valuable data for further studies on sugar transporters in N. lugens and lay a foundation for finding potential targets to control N. lugens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA