Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EBioMedicine ; 106: 105232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991381

RESUMO

BACKGROUND: Abdominal obesity increases the risk for non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: To elucidate the directional cell-type level biological mechanisms underlying the association between abdominal obesity and MASLD, we integrated adipose and liver single nucleus RNA-sequencing and bulk cis-expression quantitative trait locus (eQTL) data with the UK Biobank genome-wide association study (GWAS) data using colocalization. Then we used colocalized cis-eQTL variants as instrumental variables in Mendelian randomization (MR) analyses, followed by functional validation experiments on the target genes of the cis-eQTL variants. FINDINGS: We identified 17 colocalized abdominal obesity GWAS variants, regulating 17 adipose cell-type marker genes. Incorporating these 17 variants into MR discovers a putative tissue-of-origin, cell-type-aware causal effect of abdominal obesity on MASLD consistently with multiple MR methods without significant evidence for pleiotropy or heterogeneity. Single cell data confirm the adipocyte-enriched mean expression of the 17 genes. Our cellular experiments across human adipogenesis identify risk variant -specific epigenetic and transcriptional mechanisms. Knocking down two of the 17 genes, PPP2R5A and SH3PXD2B, shows a marked decrease in adipocyte lipidation and significantly alters adipocyte function and adipogenesis regulator genes, including DGAT2, LPL, ADIPOQ, PPARG, and SREBF1. Furthermore, the 17 genes capture a characteristic MASLD expression signature in subcutaneous adipose tissue. INTERPRETATION: Overall, we discover a significant cell-type level effect of abdominal obesity on MASLD and trace its biological effect to adipogenesis. FUNDING: NIH grants R01HG010505, R01DK132775, and R01HL170604; the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802825), Academy of Finland (Grants Nos. 333021), the Finnish Foundation for Cardiovascular Research the Sigrid Jusélius Foundation and the Jane and Aatos Erkko Foundation; American Association for the Study of Liver Diseases (AASLD) Advanced Transplant Hepatology award and NIH/NIDDK (P30DK41301) Pilot and Feasibility award; NIH/NIEHS F32 award (F32ES034668); Finnish Diabetes Research Foundation, Kuopio University Hospital Project grant (EVO/VTR grants 2005-2021), the Academy of Finland grant (Contract no. 138006); Academy of Finland (Grant Nos 335443, 314383, 272376 and 266286), Sigrid Jusélius Foundation, Finnish Medical Foundation, Finnish Diabetes Research Foundation, Novo Nordisk Foundation (#NNF20OC0060547, NNF17OC0027232, NNF10OC1013354) and Government Research Funds to Helsinki University Hospital; Orion Research Foundation, Maud Kuistila Foundation, Finish Medical Foundation, and University of Helsinki.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Obesidade Abdominal , Locos de Características Quantitativas , Humanos , Obesidade Abdominal/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Adipogenia/genética , Análise de Célula Única , Regulação da Expressão Gênica
2.
medRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826220

RESUMO

The brain's default mode network (DMN) plays a role in social cognition, with altered DMN function being associated with social impairments across various neuropsychiatric disorders. In the present study, we examined the genetic relationship between sociability and DMN-related resting-state functional magnetic resonance imaging (rs-fMRI) traits. To this end, we used genome-wide association summary statistics for sociability and 31 activity and 64 connectivity DMN-related rs-fMRI traits (N=34,691-342,461). First, we examined global and local genetic correlations between sociability and the rs-fMRI traits. Second, to assess putatively causal relationships between the traits, we conducted bi-directional Mendelian randomisation (MR) analyses. Finally, we prioritised genes influencing both sociability and rs-fMRI traits by combining three methods: gene-expression eQTL MR analyses, the CELLECT framework using single-nucleus RNA-seq data, and network propagation in the context of a protein-protein interaction network. Significant local genetic correlations were found between sociability and two rs-fMRI traits, one representing spontaneous activity within the temporal cortex, the other representing connectivity between the frontal/cingulate and angular/temporal cortices. Sociability affected 12 rs-fMRI traits when allowing for weakly correlated genetic instruments. Combing all three methods for gene prioritisation, we defined 17 highly prioritised genes, with DRD2 and LINGO1 showing the most robust evidence across all analyses. By integrating genetic and transcriptomics data, our gene prioritisation strategy may serve as a blueprint for future studies. The prioritised genes could be explored as potential biomarkers for social dysfunction in the context of neuropsychiatric disorders and as drug target genes.

3.
Front Immunol ; 15: 1349030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590523

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Assuntos
Doença de Parkinson , Retroelementos , Humanos , Retroelementos/genética , Doença de Parkinson/genética , Dopamina , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Genótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38310451

RESUMO

Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms [SNPs] in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma [ESCC]. These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci [eQTL] have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.

5.
Front Endocrinol (Lausanne) ; 14: 1279058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152129

RESUMO

Objective: To assess the causal effect of type 2 diabetes mellitus (T2DM) on male infertility (MI) and erectile dysfunction (ED) by Mendelian randomization (MR) analysis. Methods: Data for T2DM, MI, and ED were obtained from genome-wide association studies (GWAS) involving 298, 957, 73, 479, and 223, 805 Europeans, respectively. We performed univariate MR analysis using MR Egger, Weighted median (WM) and Inverse variance weighted (IVW) methods to assess causal effects among the three. Through the Genotype Tissue Expression (GTEx) database, single-nucleotide polymorphisms (SNPs) that affect the expression levels of T2DM-related genes were located using expression quantitative trait loci (eQTL). Results: MR analysis showed a significant causal relationship between T2DM and ED (WM, OR: 1.180, 95%CI: 1.010-1.378, P = 0.037; IVW, OR: 1.190, 95%CI: 1.084-1.300, P < 0.001). There is also a significant causal relationship between T2DM and MI (MR Egger, OR: 0.549, 95%CI: 0.317-0.952, P = 0.037; WM, OR: 0.593, 95%CI: 0.400, P = 0.010; IVW, OR: 0.767, 95%CI: 0.600-0.980, P = 0.034). ED may not cause MI (P > 0.05). We also found that rs6585827 corresponding to the PLEKHA1 gene associated with T2DM is an eQTL variant affecting the expression of this gene. Conclusion: T2DM has a direct causal effect on ED and MI. The level of PLEKHA1 expression suppressed by rs6585827 is potentially associated with a lower risk of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Disfunção Erétil , Infertilidade Masculina , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Infertilidade Masculina/genética , Bases de Dados Factuais
6.
Expert Rev Clin Immunol ; 19(10): 1247-1258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496418

RESUMO

INTRODUCTION: Systemic Lupus Erythematosus (SLE) is a complex multisystem autoimmune disease with a wide range of signs and symptoms in affected individuals. The utilization of genome-wide association study (GWAS) technology has led to an explosion in the number of genetic risk factors mapped for autoimmune diseases, including SLE. AREAS COVERED: In this review, we summarize the more recent genetic risk loci mapped in SLE, which bring the total number of loci mapped to approximately 200. We review prioritization analyses of the associated variants and experimental validation of the putative causal variants. This includes the implementation of new bioinformatic techniques to align genomic and functional data and the use of transcriptomics with single-cell RNA-sequencing, CRISPR genome editing, and Massive Parallel Reporter Assays to analyze non-coding regulatory genetics. EXPERT OPINION: Despite progress in identifying more genetic risk loci and variant-gene pairs for SLE, understanding its pathogenesis and applying findings clinically remains challenging. The polygenic risk score (PRS) has been used as an application of SLE genetics, but with limited performance in non-EUR populations. In the next few years, advancements in proteomics, post-translational modification estimation, and whole-genome sequencing will enhance disease understanding.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Doenças Autoimunes/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único
7.
Phenomics ; 3(3): 217-227, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325708

RESUMO

Alternative splicing exists in most multi-exonic genes, and exploring these complex alternative splicing events and their resultant isoform expressions is essential. However, it has become conventional that RNA sequencing results have often been summarized into gene-level expression counts mainly due to the multiple ambiguous mapping of reads at highly similar regions. Transcript-level quantification and interpretation are often overlooked, and biological interpretations are often deduced based on combined transcript information at the gene level. Here, for the most variable tissue of alternative splicing, the brain, we estimate isoform expressions in 1,191 samples collected by the Genotype-Tissue Expression (GTEx) Consortium using a powerful method that we previously developed. We perform genome-wide association scans on the isoform ratios per gene and identify isoform-ratio quantitative trait loci (irQTL), which could not be detected by studying gene-level expressions alone. By analyzing the genetic architecture of the irQTL, we show that isoform ratios regulate educational attainment via multiple tissues including the frontal cortex (BA9), cortex, cervical spinal cord, and hippocampus. These tissues are also associated with different neuro-related traits, including Alzheimer's or dementia, mood swings, sleep duration, alcohol intake, intelligence, anxiety or depression, etc. Mendelian randomization (MR) analysis revealed 1,139 pairs of isoforms and neuro-related traits with plausible causal relationships, showing much stronger causal effects than on general diseases measured in the UK Biobank (UKB). Our results highlight essential transcript-level biomarkers in the human brain for neuro-related complex traits and diseases, which could be missed by merely investigating overall gene expressions. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00100-6.

8.
J Clin Med ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176653

RESUMO

INTRODUCTION: Skeletal abnormalities and malocclusions have varied features that impact populations globally, impairing aesthetics and lowering life quality. The prevalence of the Skeletal Class III disease is the lowest among all angle malocclusions, with varied prevalence across nations. Environmental, genetic, and societal factors play a role in its numerous etiologies. In this study, we conducted a thorough search across the published data relating to quantitative trait loci (QTL) and the genes associated with Class III progression in humans, discussed these findings and their limitations, and proposed future directions and strategies for studying this phenotype. METHODS: An inclusive search of published papers in the PubMed and Google Scholar search engines using the following terms: 1. Human skeletal Class III; 2. Genetics of Human skeletal Class III; 3. QTL mapping and gene associated with human skeletal Class III; 4. enriched skeletal Class-III-malocclusion-associated pathways. RESULTS: Our search has found 53 genes linked with skeletal Class III malocclusion reported in humans, genes associated with epigenetics and phenomena, and the top 20 enriched pathways associated with skeletal Class III malocclusion. CONCLUSIONS: The human investigations yielded some contentious conclusions. We conducted a genome-wide association study (GWAS), an epigenetics-wide association study (EWAS), RNA-seq analysis, integrating GWAS and expression quantitative trait loci (eQTL), micro- and small-RNA, and long non-coding RNA analysis in tissues connected to skeletal Class III malocclusion phenotype in tissues connected with the skeletal phenotype. Finally, we invite regional, national, and international orthodontists and surgeons to join this effort by contributing human samples with skeletal Class III malocclusion following the accepted Helsinki ethical protocol to challenge these phenomena jointly.

9.
Front Cardiovasc Med ; 10: 1093255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873417

RESUMO

Background: Atrial fibrillation (AF) is an age-related disease, while telomeres play a central role in aging. But the relationship between AF and telomere length (LTL) is still controversial. This study aims to examine the potential causal association between AF and LTL by using Mendelian randomization (MR). Methods: Bidirectional two-sample MR, expression and protein quantitative trait loci (eQTL and pQTL)-based MR were performed using genetic variants from United Kingdom Biobank, FinnGen, and a meta-analysis study, which comprised nearly 1 million participants in the Atrial Fibrillation Study and 470,000 participants in the Telomere Length Study. Apart from the inverse variance weighted (IVW) approach as the main MR analysis, complementary analysis approaches and sensitivity analysis were applied. Results: The forward MR revealed a significant causal estimate for the genetically predicted AF with LTL shortening [IVW: odds ratio (OR) = 0.989, p = 0.007; eQTL-IVW: OR = 0.988, p = 0.005; pQTL-IVW: OR = 0.975, p < 0.005]. But in the reverse MR analysis, genetically predicted LTL has no significant correlation with AF (IVW: OR = 0.995, p = 0.916; eQTL-IVW: OR = 0.999, p = 0.995; pQTL-IVW: OR = 1.055, p = 0.570). The FinnGen replication data yielded similar findings. Sensitivity analysis ensured the stability of the results. Conclusion: The presence of AF leads to LTL shortening rather than the other way around. Aggressive intervention for AF may delay the telomere attrition.

10.
Biol Psychiatry ; 93(7): 642-650, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36658083

RESUMO

Genome-wide association studies reveal the complex polygenic architecture underlying psychiatric disorder risk, but there is an unmet need to validate causal variants, resolve their target genes(s), and explore their functional impacts on disorder-related mechanisms. Disorder-associated loci regulate transcription of target genes in a cell type- and context-specific manner, which can be measured through expression quantitative trait loci. In this review, we discuss methods and insights from context-specific modeling of genetically and environmentally regulated expression. Human induced pluripotent stem cell-derived cell type and organoid models have uncovered context-specific psychiatric disorder associations by investigating tissue-, cell type-, sex-, age-, and stressor-specific genetic regulation of expression. Techniques such as massively parallel reporter assays and pooled CRISPR (clustered regularly interspaced short palindromic repeats) screens make it possible to functionally fine-map genome-wide association study loci and validate their target genes at scale. Integration of disorder-associated contexts with these patient-specific human induced pluripotent stem cell models makes it possible to uncover gene by environment interactions that mediate disorder risk, which will ultimately improve our ability to diagnose and treat psychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos Mentais , Humanos , Estudo de Associação Genômica Ampla/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Locos de Características Quantitativas , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Regulação da Expressão Gênica
11.
Eur J Respir Med ; 5(1): 359-371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390497

RESUMO

Background: A limited pool of SNPs are linked to the development and severity of sarcoidosis, a systemic granulomatous inflammatory disease. By integrating genome-wide association studies (GWAS) data and expression quantitative trait loci (eQTL) single nuclear polymorphisms (SNPs), we aimed to identify novel sarcoidosis SNPs potentially influencing the development of complicated sarcoidosis. Methods: A GWAS (Affymetrix 6.0) involving 209 African-American (AA) and 193 European-American (EA, 75 and 51 complicated cases respectively) and publicly-available GWAS controls (GAIN) was utilized. Annotation of multi-tissue eQTL SNPs present on the GWAS created a pool of ~46,000 eQTL SNPs examined for association with sarcoidosis risk and severity (Logistic Model, Plink). The most significant EA/AA eQTL SNPs were genotyped in a sarcoidosis validation cohort (n=1034) and cross-validated in two independent GWAS cohorts. Results: No single GWAS SNP achieved significance (p<1x10-8), however, analysis of the eQTL/GWAS SNP pool yielded 621 eQTL SNPs (p<10-4) associated with 730 genes that highlighted innate immunity, MHC Class II, and allograft rejection pathways with multiple SNPs validated in an independent sarcoidosis cohort (105 SNPs analyzed) (NOTCH4, IL27RA, BTNL2, ANXA11, HLA-DRB1). These studies confirm significant association of eQTL/GWAS SNPs in EAs and AAs with sarcoidosis risk and severity (complicated sarcoidosis) involving HLA region and innate immunity. Conclusion: Despite the challenge of deciphering the genetic basis for sarcoidosis risk/severity, these results suggest that integrated eQTL/GWAS approaches may identify novel variants/genes and support the contribution of dysregulated innate immune responses to sarcoidosis severity.

12.
Front Genet ; 13: 997302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386835

RESUMO

A decreased estimated glomerular filtration rate (eGFR) leading to chronic kidney disease is a significant public health problem. Kidney function is a heritable trait, and recent application of genome-wide association studies (GWAS) successfully identified multiple eGFR-associated genetic loci. To increase statistical power for detecting independent associations in GWAS loci, we improved our recently developed quasi-adaptive method estimating SNP-specific alpha levels for the conditional analysis, and applied it to the GWAS meta-analysis results of eGFR among 783,978 European-ancestry individuals. Among known eGFR loci, we revealed 19 new independent association signals that were subsequently replicated in the United Kingdom Biobank (n = 408,608). These associations have remained undetected by conditional analysis using the established conservative genome-wide significance level of 5 × 10-8. Functional characterization of known index SNPs and novel independent signals using colocalization of conditional eGFR association results and gene expression in cis across 51 human tissues identified two potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and three candidate genes across other tissues: SLC22A2, LRP2, and CDKN1C. These colocalizations were not identified in the original GWAS. By applying our improved quasi-adaptive method, we successfully identified additional genetic variants associated with eGFR. Considering these signals in colocalization analyses can increase the precision of revealing potentially functional genes of GWAS loci.

13.
Genome Med ; 14(1): 53, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590387

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have identified multiple risk loci for bipolar disorder (BD). However, pinpointing functional (or causal) variants in the reported risk loci and elucidating their regulatory mechanisms remain challenging. METHODS: We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) data from human brain tissues (or neuronal cell lines) and position weight matrix (PWM) data to identify functional single-nucleotide polymorphisms (SNPs). Then, we verified the regulatory effects of these transcription factor (TF) binding-disrupting SNPs (hereafter referred to as "functional SNPs") through a series of experiments, including reporter gene assays, allele-specific expression (ASE) analysis, TF knockdown, CRISPR/Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. Finally, we overexpressed PACS1 (whose expression was most significantly associated with the identified functional SNPs rs10896081 and rs3862386) in mouse primary cortical neurons to investigate if PACS1 affects dendritic spine density. RESULTS: We identified 16 functional SNPs (in 9 risk loci); these functional SNPs disrupted the binding of 7 TFs, for example, CTCF and REST binding was frequently disrupted. We then identified the potential target genes whose expression in the human brain was regulated by these functional SNPs through eQTL analysis. Of note, we showed dysregulation of some target genes of the identified TF binding-disrupting SNPs in BD patients compared with controls, and overexpression of PACS1 reduced the density of dendritic spines, revealing the possible biological mechanisms of these functional SNPs in BD. CONCLUSIONS: Our study identifies functional SNPs in some reported risk loci and sheds light on the regulatory mechanisms of BD risk variants. Further functional characterization and mechanistic studies of these functional SNPs and candidate genes will help to elucidate BD pathogenesis and develop new therapeutic approaches and drugs.


Assuntos
Transtorno Bipolar , Estudo de Associação Genômica Ampla , Animais , Transtorno Bipolar/genética , Predisposição Genética para Doença , Genômica , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte Vesicular/genética
14.
Genes (Basel) ; 12(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356056

RESUMO

Many marine ectotherms, especially those inhabiting highly variable intertidal zones, develop high phenotypic plasticity in response to rapid climate change by modulating gene expression levels. Herein, we examined the regulatory architecture of heat-responsive gene expression plasticity in oysters using expression quantitative trait loci (eQTL) analysis. Using a backcross family of Crassostrea gigas and its sister species Crassostrea angulata under acute stress, 56 distant regulatory regions accounting for 6-26.6% of the gene expression variation were identified for 19 heat-responsive genes. In total, 831 genes and 164 single nucleotide polymorphisms (SNPs) that could potentially regulate expression of the target genes were screened in the eQTL region. The association between three SNPs and the corresponding target genes was verified in an independent family. Specifically, Marker13973 was identified for heat shock protein (HSP) family A member 9 (HspA9). Ribosomal protein L10a (RPL10A) was detected approximately 2 kb downstream of the distant regulatory SNP. Further, Marker14346-48 and Marker14346-85 were in complete linkage disequilibrium and identified for autophagy-related gene 7 (ATG7). Nuclear respiratory factor 1 (NRF1) was detected approximately 3 kb upstream of the two SNPs. These results suggested regulatory relationships between RPL10A and HSPA9 and between NRF1 and ATG7. Our findings indicate that distant regulatory mutations play an important role in the regulation of gene expression plasticity by altering upstream regulatory factors in response to heat stress. The identified eQTLs provide candidate biomarkers for predicting the persistence of oysters under future climate change scenarios.


Assuntos
Ostreidae/genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Adaptação Fisiológica , Animais , Crassostrea/genética , Feminino , Expressão Gênica , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico/genética
15.
Mol Cell Neurosci ; 115: 103656, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34284104

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory disorder leading to chronic disability. Brain lesions in MS commonly arise in normal-appearing white matter (NAWM). Genome-wide association studies (GWAS) have identified genetic variants associated with MS. Transcriptome alterations have been observed in case-control studies of NAWM. We developed a Cross-Dataset Evaluation (CDE) function for our network-based tool, Edge-Weighted Dense Module Search of GWAS (EW_dmGWAS). We applied CDE to integrate publicly available MS GWAS summary statistics of 41,505 cases and controls with collectively 38 NAWM expression samples, using the human protein interactome as the reference network, to investigate biological underpinnings of MS etiology. We validated the resulting modules with colocalization of GWAS and expression quantitative trait loci (eQTL) signals, using GTEx Consortium expression data for MS-relevant tissues: 14 brain tissues and 4 immune-related tissues. Other network assessments included a drug target query and functional gene set enrichment analysis. CDE prioritized a MS NAWM network containing 55 unique genes. The gene list was enriched (p-value = 2.34 × 10-7) with GWAS-eQTL colocalized genes: CDK4, IFITM3, MAPK1, MAPK3, METTL12B and PIK3R2. The resultant network also included drug signatures of FDA-approved medications. Gene set enrichment analysis revealed the top functional term "intracellular transport of virus", among other viral pathways. We prioritize critical genes from the resultant network: CDK4, IFITM3, MAPK1, MAPK3, METTL12B and PIK3R2. Enriched drug signatures suggest potential drug targets and drug repositioning strategies for MS. Finally, we propose mechanisms of potential MS viral onset, based on prioritized gene set and functional enrichment analysis.


Assuntos
Esclerose Múltipla , Preparações Farmacêuticas , Encéfalo , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana , Esclerose Múltipla/genética , Doenças Neuroinflamatórias , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Ligação a RNA
16.
J Clin Med ; 10(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070965

RESUMO

Chronic kidney disease (CKD), a damaged condition of the kidneys, is a global public health problem that can be caused by diabetes, hypertension, and other disorders. Recently, the MANBA gene was identified in CKD by integrating CKD-related variants and kidney expression quantitative trait loci (eQTL) data. This study evaluated the effects of MANBA gene variants on CKD and kidney function-related traits using a Korean cohort. We also analyzed the association of MANBA gene variants with kidney-related traits such as the estimated glomerular filtration rate (eGFR), and blood urea nitrogen (BUN), creatinine, and uric acid levels using linear regression analysis. As a result, 14 single nucleotide polymorphisms (SNPs) were replicated in CKD (p < 0.05), consistent with previous studies. Among them, rs4496586, which was the most significant for CKD and kidney function-related traits, was associated with a decreased CKD risk in participants with the homozygous minor allele (CC), increased eGFR, and decreased creatinine and uric acid concentrations. Furthermore, the association analysis between the rs4496586 genotype and MANBA gene expression in human tubules and glomeruli showed high MANBA gene expression in the minor allele carriers. In conclusion, this study demonstrated that MANBA gene variants were associated with CKD and kidney function-related traits in a Korean cohort.

17.
Genes (Basel) ; 12(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804025

RESUMO

Because studies of rare variant effects on gene expression have limited power, we investigated set-based methods to identify rare expression quantitative trait loci (eQTL) related to Alzheimer disease (AD). Gene-level and pathway-level cis rare-eQTL mapping was performed genome-wide using gene expression data derived from blood donated by 713 Alzheimer's Disease Neuroimaging Initiative participants and from brain tissues donated by 475 Religious Orders Study/Memory and Aging Project participants. The association of gene or pathway expression with a set of all cis potentially regulatory low-frequency and rare variants within 1 Mb of genes was evaluated using SKAT-O. A total of 65 genes expressed in the brain were significant targets for rare expression single nucleotide polymorphisms (eSNPs) among which 17% (11/65) included established AD genes HLA-DRB1 and HLA-DRB5. In the blood, 307 genes were significant targets for rare eSNPs. In the blood and the brain, GNMT, LDHC, RBPMS2, DUS2, and HP were targets for significant eSNPs. Pathway enrichment analysis revealed significant pathways in the brain (n = 9) and blood (n = 16). Pathways for apoptosis signaling, cholecystokinin receptor (CCKR) signaling, and inflammation mediated by chemokine and cytokine signaling were common to both tissues. Significant rare eQTLs in inflammation pathways included five genes in the blood (ALOX5AP, CXCR2, FPR2, GRB2, IFNAR1) that were previously linked to AD. This study identified several significant gene- and pathway-level rare eQTLs, which further confirmed the importance of the immune system and inflammation in AD and highlighted the advantages of using a set-based eQTL approach for evaluating the effect of low-frequency and rare variants on gene expression.


Assuntos
Doença de Alzheimer/genética , Encéfalo/patologia , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Locos de Características Quantitativas/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Sistema Imunitário/fisiologia , Inflamação/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética
18.
Genetics ; 217(3)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789342

RESUMO

Ghost quantitative trait loci (QTL) are the false discoveries in QTL mapping, that arise due to the "accumulation" of the polygenic effects, uniformly distributed over the genome. The locations on the chromosome that are strongly correlated with the total of the polygenic effects depend on a specific sample correlation structure determined by the genotypes at all loci. The problem is particularly severe when the same genotypes are used to study multiple QTL, e.g. using recombinant inbred lines or studying the expression QTL. In this case, the ghost QTL phenomenon can lead to false hotspots, where multiple QTL show apparent linkage to the same locus. We illustrate the problem using the classic backcross design and suggest that it can be solved by the application of the extended mixed effect model, where the random effects are allowed to have a nonzero mean. We provide formulas for estimating the thresholds for the corresponding t-test statistics and use them in the stepwise selection strategy, which allows for a simultaneous detection of several QTL. Extensive simulation studies illustrate that our approach eliminates ghost QTL/false hotspots, while preserving a high power of true QTL detection.


Assuntos
Cruzamentos Genéticos , Modelos Genéticos , Herança Multifatorial , Locos de Características Quantitativas , Animais , Cruzamento/métodos , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Plantas/genética
19.
Biol Psychiatry ; 89(8): 825-835, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33637304

RESUMO

BACKGROUND: The etiology of frontotemporal dementia (FTD) is poorly understood. To identify genes with predicted expression levels associated with FTD, we integrated summary statistics with external reference gene expression data using a transcriptome-wide association study approach. METHODS: FUSION software was used to leverage FTD summary statistics (all FTD: n = 2154 cases, n = 4308 controls; behavioral variant FTD: n = 1337 cases, n = 2754 controls; semantic dementia: n = 308 cases, n = 616 controls; progressive nonfluent aphasia: n = 269 cases, n = 538 controls; FTD with motor neuron disease: n = 200 cases, n = 400 controls) from the International FTD-Genomics Consortium with 53 expression quantitative loci tissue type panels (n = 12,205; 5 consortia). Significance was assessed using a 5% false discovery rate threshold. RESULTS: We identified 73 significant gene-tissue associations for FTD, representing 44 unique genes in 34 tissue types. Most significant findings were derived from dorsolateral prefrontal cortex splicing data (n = 19 genes, 26%). The 17q21.31 inversion locus contained 23 significant associations, representing 6 unique genes. Other top hits included SEC22B (a gene involved in vesicle trafficking), TRGV5, and ZNF302. A single gene finding (RAB38) was observed for behavioral variant FTD. For other clinical subtypes, no significant associations were observed. CONCLUSIONS: We identified novel candidate genes (e.g., SEC22B) and previously reported risk regions (e.g., 17q21.31) for FTD. Most significant associations were observed in dorsolateral prefrontal cortex splicing data despite the modest sample size of this reference panel. This suggests that our findings are specific to FTD and are likely to be biologically relevant highlights of genes at different FTD risk loci that are contributing to the disease pathology.


Assuntos
Demência Frontotemporal , Demência Frontotemporal/genética , Expressão Gênica , Humanos
20.
Eur Neuropsychopharmacol ; 44: 1-13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495110

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable condition that represents the most common neurodevelopmental disorder in childhood, persisting into adulthood in around 40-65% of the cases. ADHD is characterised by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity. Mounting evidence points towards ADHD having a strong genetic component and the first genome-wide significant findings have recently been reported. However, the functional characterization of variants unravelled by genome-wide association studies (GWAS) is challenging. Likewise, gene expression profiling studies have also been undertaken and novel integrative approaches combining genomic and transcriptomic data are starting to be conducted, which offers an exciting way that might provide a more informative insight towards the genetic architecture of ADHD. In this review, we summarised current knowledge on genomics, transcriptomics and integrative approaches in ADHD, focusing on GWAS and GWAS meta-analyses (GWAS-MA)- as genomics analyses- microarray and RNA-seq- as transcriptomics analyses-, and studies integrating genomics and transcriptomics data. In addition, current strengths and limitations of such approaches are discussed and further research avenues are proposed in order to face unsolved issues. Although important progress has been made, there is still a long way ahead to elucidate the biological mechanisms of ADHD, which eventually may lead to more personalized approaches in the future. Large- scale research efforts and new technological and statistical approaches are envisaged as important means towards deciphering ADHD in the upcoming years.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Comportamento Impulsivo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA