RESUMO
BACKGROUND: Gamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders. HYPOTHESIS/PURPOSE: This study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders. METHODS: Stigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2ß2γ2L, α4ß3δ, and α4ß3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2ß2γ2L, α4ß3, and α4ß3δ complexes by in silico docking. RESULTS: Stigmasterol enhanced GABA-induced currents at ternary α2ß2γ2L, α4ß3δ, and binary α4ß3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4ß3δ was significantly higher compared to the binary α4ß3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4ß3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of ß3 at α4ß3δ complex. In in vivo studies, Stigmasterol (0.5-3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism. CONCLUSION: To our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.
Assuntos
Ansiolíticos , Anticonvulsivantes/farmacologia , Moduladores GABAérgicos/farmacologia , Estigmasterol , Animais , Ansiolíticos/farmacologia , Oócitos , Receptores de GABA-A , Convulsões/tratamento farmacológico , Estigmasterol/farmacologia , Xenopus laevisRESUMO
Peripheral nerve injury induces functional and structural remodeling of neural circuits along the somatosensory pathways, forming the basis for somatotopic reorganization and ectopic sensations, such as referred phantom pain. However, the mechanisms underlying that remodeling remain largely unknown. Whisker sensory nerve injury drives functional remodeling in the somatosensory thalamus: the number of afferent inputs to each thalamic neuron increases from one to many. Here, we report that extrasynaptic γ-aminobutyric acid-type A receptor (GABAAR)-mediated tonic inhibition is necessary for that remodeling. Extrasynaptic GABAAR currents were potentiated rapidly after nerve injury in advance of remodeling. Pharmacological activation of the thalamic extrasynaptic GABAARs in intact mice induced similar remodeling. Notably, conditional deletion of extrasynaptic GABAARs in the thalamus rescued both the injury-induced remodeling and the ectopic mechanical hypersensitivity. Together, our results reveal a molecular basis for injury-induced remodeling of neural circuits and may provide a new pharmacological target for referred phantom sensations after peripheral nerve injury.
Assuntos
Vias Aferentes/fisiopatologia , Tecido Nervoso/lesões , Tecido Nervoso/fisiopatologia , Inibição Neural/fisiologia , Sensação/fisiologia , Tálamo/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Núcleos Ventrais do Tálamo/fisiopatologiaRESUMO
The external globus pallidus (GP) is a key GABAergic hub in the basal ganglia (BG) circuitry, a neuronal network involved in motor control. In Parkinson's disease (PD), the rate and pattern of activity of GP neurons are profoundly altered and contribute to the motor symptoms of the disease. In rodent models of PD, the striato-pallidal pathway is hyperactive, and extracellular GABA concentrations are abnormally elevated in the GP, supporting the hypothesis of an alteration of neuronal and/or glial clearance of GABA. Here, we discovered the existence of persistent GABAergic tonic inhibition in GP neurons of dopamine-depleted (DD) rodent models. We showed that glial GAT-3 transporters are downregulated while neuronal GAT-1 function remains normal in DD rodents. Finally, we showed that blocking GAT-3 activity in vivo alters the motor coordination of control rodents, suggesting that GABAergic tonic inhibition in the GP contributes to the pathophysiology of PD.
Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Globo Pálido/patologia , Globo Pálido/fisiopatologia , Inibição Neural , Neurônios/patologia , Doença de Parkinson/fisiopatologia , Animais , Dopamina/deficiência , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Globo Pálido/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Receptores de GABA/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido gama-Aminobutírico/farmacologiaRESUMO
In the mammalian central nervous system (CNS) GABAA receptors (GABAARs) mediate neuronal inhibition and are important therapeutic targets. GABAARs are composed of 5 subunits, drawn from 19 proteins, underpinning expression of 20-30 GABAAR subtypes. In the CNS these isoforms are heterogeneously expressed and exhibit distinct physiological and pharmacological properties. We report the discovery of S44819, a novel tricyclic oxazolo-2,3-benzodiazepine-derivative, that selectively inhibits α5-subunit-containing GABAARs (α5-GABAARs). Current α5-GABAAR inhibitors bind to the "benzodiazepine site". However, in HEK293 cells expressing recombinant α5-GABAARs, S44819 had no effect on 3H-flumazenil binding, but displaced the GABAAR agonist 3H-muscimol and competitively inhibited the GABA-induced responses. Importantly, we reveal that the α5-subunit selectivity is uniquely governed by amino acid residues within the α-subunit F-loop, a region associated with GABA binding. In mouse hippocampal CA1 neurons, S44819 enhanced long-term potentiation (LTP), blocked a tonic current mediated by extrasynaptic α5-GABAARs, but had no effect on synaptic GABAARs. In mouse thalamic neurons, S44819 had no effect on the tonic current mediated by δ-GABAARs, or on synaptic (α1ß2γ2) GABAARs. In rats, S44819 enhanced object recognition memory and reversed scopolamine-induced impairment of working memory in the eight-arm radial maze. In conclusion, S44819 is a first in class compound that uniquely acts as a potent, competitive, selective antagonist of recombinant and native α5-GABAARs. Consequently, S44819 enhances hippocampal synaptic plasticity and exhibits pro-cognitive efficacy. Given this profile, S44819 may improve cognitive function in neurodegenerative disorders and facilitate post-stroke recovery.
Assuntos
Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Nootrópicos/farmacologia , Oxazóis/farmacologia , Receptores de GABA-A/metabolismo , Animais , Ligação Competitiva , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Flumazenil/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/farmacologiaRESUMO
A reduction in the activity of GABAA receptors, particularly α5 subunit-containing GABAA receptors (α5GABAARs), has been implicated in the etiology of Autism Spectrum Disorders (ASD). Genetically modified mice that lack α5GABAARs (Gabra5-/-) exhibit autism-like behaviors and both enhanced and impaired learning and memory, depending on the behavioral task. The aim of this study was to examine the electroencephalogram (EEG) activity and sleep-wake behaviors in Gabra5-/- mice and wild-type mice. In addition, since some individuals with ASD can exhibit elevated innate immune response, mice were treated with lipopolysaccharide (LPS; 125mg/kg intraperitoneal injection) or vehicle and EEG and sleep-wake patterns were assessed. The results showed that Gabra5-/- mice (n=3) exhibited elevated 0-2Hz EEG activity during all sleep-wake states (all p<0.04), decreased 8-12Hz EEG activity during REM sleep (p=0.04), and decreased sleep spindles under baseline conditions compared to wild-type controls (n=4) (all p≤0.03). Alterations in EEG activity and sleep-wake behavior were identified in Gabra5-/- mice following treatment with LPS, however these changes were similar to those in wild-type mice. Our findings support the hypothesis that reduced α5GABAAR activity contributes to an ASD phenotype. The results also suggest that Gabra5-/- mice may serve as an animal model for ASD, as assessed through EEG activity and sleep-wake behaviors.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Receptores de GABA-A/fisiologia , Fases do Sono/fisiologia , Vigília/fisiologia , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Receptores de GABA-A/biossíntese , Receptores de GABA-A/deficiência , Receptores de GABA-A/genética , Fases do Sono/efeitos dos fármacos , Fases do Sono/genética , Vigília/genéticaRESUMO
GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1ß3γ2L and extrasynaptic-type α4ß3δ GABAA receptors using electrophysiology. For α1ß3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1ß3(S408A,S409A)γ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of ß3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4ß3δ and α4ß3(S408A,S409A)δ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4(S443A)ß3(S408A,S409A)δ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and ß3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of ß3(S408,S409) implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by two endogenous neuromodulators.