Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 256(6): 108, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348172

RESUMO

MAIN CONCLUSION: This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Embriófitas , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Embriófitas/metabolismo , Zinco/metabolismo , Plantas/metabolismo
2.
Front Plant Sci ; 13: 916168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845702

RESUMO

The zinc deficiency response in Arabidopsis thaliana is regulated by F-group basic region leucine-zipper (F-bZIP) transcription factors, and there is evidence of evolutionary conservation of this regulatory network in land plants. Fundamental knowledge on the zinc homeostasis regulation in crop species will contribute to improving their zinc nutritional value. Legumes are protein-rich crops, used worldwide as part of traditional diets and as animal forage, being therefore a good target for micronutrient biofortification. Here, we identified F-bZIP transcription factors in representative legume species and functionally characterized the two F-bZIPs from Medicago truncatula. Results indicate that MtFbZIP1 is the functional homolog of A. thaliana bZIP19 and bZIP23, while MtFbZIP2 does not play a role in the zinc deficiency response. Additionally, analysis of M. truncatula genes from the Zrt/Irt-like protein (ZIP) family of zinc transporters or encoding nicotianamine synthase enzymes that produce the zinc ligand nicotianamine, support the conservation of the F-bZIP-regulated zinc deficiency response in M. truncatula. Phylogenetic analysis of F-bZIP homologs enriched in legume species reinforces the branching into two groups, with MtFbZIP1 and MtFbZIP2 mapping in Groups 1 and 2, respectively. This phylogeny combined with the functional characterization of MtFbZIPs supports the suggested conservation of the zinc deficiency response associated with Group 1 F-bZIPs, and the more variable evolutionary paths associated with Group 2. Overall, we provide novel insight on the mechanisms of response to zinc deficiency in M. truncatula, which contributes to developing strategies for improving zinc content in legume crops.

3.
J Exp Bot ; 71(12): 3664-3677, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32133499

RESUMO

The F-bZIP transcription factors bZIP19 and bZIP23 are the central regulators of the zinc deficiency response in Arabidopsis, and phylogenetic analysis of F-bZIP homologs across land plants indicates that the regulatory mechanism of the zinc deficiency response may be conserved. Here, we identified the rice F-bZIP homologs and investigated their function. OsbZIP48 and OsbZIP50, but not OsbZIP49, complement the zinc deficiency-hypersensitive Arabidopsis bzip19bzip23 double mutant. Ectopic expression of OsbZIP50 in Arabidopsis significantly increases plant zinc accumulation under control zinc supply, suggesting an altered Zn sensing in OsbZIP50. In addition, we performed a phylogenetic analysis of F-bZIP homologs from representative monocot species that supports the branching of plant F-bZIPs into Group 1 and Group 2. Our results suggest that regulation of the zinc deficiency response in rice is conserved, with OsbZIP48 being a functional homolog of AtbZIP19 and AtbZIP23. A better understanding of the mechanisms behind the Zn deficiency response in rice and other important crops will contribute to develop plant-based strategies to address the problems of Zn deficiency in soils, crops, and cereal-based human diets.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Oryza , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zinco/metabolismo
4.
Front Plant Sci ; 9: 1955, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723487

RESUMO

All living organisms require zinc as an essential micronutrient. Maintaining appropriate intracellular zinc supply, and avoiding deficiency or toxic excess, requires a tight regulation of zinc homeostasis. In Arabidopsis, bZIP19 and bZIP23 (basic-leucine zipper) transcription factors are the central regulators of the zinc deficiency response. Their targets include members of the ZIP (Zrt/Irt-like Protein) transporter family, involved in cellular zinc uptake, which are up-regulated at zinc deficiency. However, the mechanisms by which these transcription factors are regulated by cellular zinc status are not yet known. Here, to further our insight, we took advantage of the zinc deficiency hypersensitive phenotype of the bzip19 bzip23 double mutant, and used it as background to produce complementation lines of each Arabidopsis F-bZIP transcription factor, including bZIP24. On these lines, we performed complementation and localization studies, analyzed the transcript level of a subset of putative target genes, and performed elemental tissue profiling. We find evidence supporting that the zinc-dependent activity of bZIP19 and bZIP23 is modulated by zinc at protein level, in the nucleus, where cellular zinc sufficiency represses their activity and zinc deficiency is required. In addition, we show that these two transcription factors are functionally redundant to a large extent, and that differential tissue-specific expression patterns might, at least partly, explain distinct regulatory activities. Finally, we show that bZIP24 does not play a central role in the Zn deficiency response. Overall, we provide novel information that advances our understanding of the regulatory activity of bZIP19 and bZIP23.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA