Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744936

RESUMO

The structure and bonding properties of 16 complexes formed by trivalent f elements (M=U, Np, Pu and lanthanides except for Pm and Pr) with cyclopentadienyl (Cp) and cyclohexylisonitrile (C≡NCy) ligands, (Cp)3M(C≡NCy), were studied by a joint experimental (XRD, NMR) and theoretical (DFT) analysis. For the large La(III) ion, the bis-adduct (Cp)3La(C≡NCy)2 could also be synthesized and characterized. The metal-ligand interactions, focusing on the comparison of the actinides and lanthanides as well as on the competition of the two different ligands for M, were elucidated using the Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) models. The results point to interactions of comparable strengths with the anionic Cp and neutral C≡NCy ligands in the complexes. The structural and bonding properties of the actinide complexes reflect small but characteristic differences with respect to the lanthanide analogues. They include larger ligand-to-metal charge transfers as well as metal-ligand electron-sharing interactions. The most significant experimental marker of these covalent interactions is the C≡N stretching frequency.

2.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744946

RESUMO

Three principal factors may influence the final structure of coordination polymers (CPs): (i) the nature of the ligand, (ii) the type and coordination number of the metal center, and (iii) the reaction conditions. Further, flexible carboxylate aliphatic ligands have been widely employed as building blocks for designing and synthesizing CPs, resulting in a diverse array of materials with exciting architectures, porosities, dimensionalities, and topologies as well as an increasing number of properties and applications. These ligands show different structural features, such as torsion angles, carbon backbone number, and coordination modes, which affect the desired products and so enable the generation of polymorphs or crystalline phases. Additionally, due to their large coordination numbers, using 4f and 5f metals as coordination centers combined with aliphatic ligands increases the possibility of obtaining different crystal phases. Additionally, by varying the synthetic conditions, we may control the production of a specific solid phase by understanding the thermodynamic and kinetic factors that influence the self-assembly process. This revision highlights the relationship between the structural variety of CPs based on flexible carboxylate aliphatic ligands and f-elements (lanthanide and actinides) and their outstanding luminescent properties such as solid-state emissions, sensing, and photocatalysis. In this sense, we present a structural analysis of the CPs reported with the oxalate ligand, as the one rigid ligand of the family, and other flexible dicarboxylate linkers with -CH2- spacers. Additionally, the nature of the luminescence properties of the 4f or 5f-CPs is analyzed, and finally, we present a novel set of CPs using a glutarate-derived ligand and samarium, with the formula [2,2'-bipyH][Sm(HFG)2 (2,2'-bipy) (H2O)2]•(2,2'-bipy) (α-Sm) and [2,2'-bipyH][Sm(HFG)2 (2,2'-bipy) (H2O)2] (ß-Sm).


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Ácidos Carboxílicos , Flúor , Elementos da Série dos Lantanídeos/química , Ligantes , Modelos Moleculares , Polímeros/química
3.
Toxicology ; 456: 152771, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33831499

RESUMO

Lanthanide (Ln) exposure poses a serious health risk to animals and humans. In this study, we investigated the effect of 10-9-10-3 M La, Ce, Eu, and Yb exposure onto the viability of rat renal NRK-52E cells in dependence on Ln concentration, exposure time, and composition of the cell culture medium. Especially, the influence of fetal bovine serum (FBS) and citrate onto Ln cytotoxicity, solubility, and speciation was investigated. For this, in vitro cell viability studies using the XTT assay and fluorescence microscopic investigations were combined with solubility and speciation studies using TRLFS and ICP-MS, respectively. The theoretical Ln speciation was predicted using thermodynamic modeling. All Ln exhibit a concentration- and time-dependent effect on NRK-52E cells. FBS is the key parameter influencing both Ln solubility and cytotoxicity. We demonstrate that FBS is able to bind Ln3+ ions, thus, promoting solubility and reducing cytotoxicity after Ln exposure for 24 and 48 h. In contrast, citrate addition to the cell culture medium has no significant effect on Ln solubility and speciation nor cytotoxicity after Ln exposure for 24 and 48 h. However, a striking increase of cell viability is observable after Ln exposure for 8 h. Out of the four Ln elements under investigation, Ce is the most effective. Results from TRLFS and solubility measurements correlate well to those from in vitro cell culture experiments. In contrast, results from thermodynamic modeling do not correlate to TRLFS results, hence, demonstrating that big gaps in the database render this method, currently, inapplicable for the prediction of Ln speciation in cell culture media. Finally, this study demonstrates the importance and the synergistic effects of combining chemical and spectroscopic methods with cell culture techniques and biological methods.


Assuntos
Técnicas de Cultura de Células/métodos , Rim/efeitos dos fármacos , Rim/metabolismo , Elementos da Série dos Lantanídeos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Meios de Cultura/toxicidade , Relação Dose-Resposta a Droga , Rim/citologia , Ratos , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/toxicidade
4.
Methods Enzymol ; 651: 1-22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888200

RESUMO

Lanthanide biochemistry has experienced a revival in recent years owing to the discovery of new biomolecular platforms that are amenable to bind, sequester, or transport lanthanide ions. This has inherently created a need for physicochemical methods that report on lanthanide-containing macromolecular systems. In this chapter, the use of spectrophotometric methods to study the stability of lanthanide-macromolecule complexes in solution is discussed. Indeed, lanthanide ions have unique spectral properties in the ultraviolet, visible, and near-infrared domains that set them apart from the more common elements encountered in biochemistry, and these unique features can be leveraged to study, in a quantitative and robust manner, the solution chemistry of their biorelevant species (Kd, pH stability, temperature profile, etc.). This chapter aims at bringing a method that has been established and validated in the small molecule chemistry field to this new era of lanthanide biochemistry.


Assuntos
Elementos da Série dos Lantanídeos , Íons , Substâncias Macromoleculares , Soluções , Espectrofotometria
5.
Angew Chem Int Ed Engl ; 60(17): 9534-9539, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33565689

RESUMO

We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(µ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(µ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.

6.
Ecotoxicol Environ Saf ; 173: 469-481, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30802736

RESUMO

Exposure to lanthanides (Ln) poses a serious health risk to animals and humans. Since Ln are mainly excreted with urine, we investigated the effect of La, Ce, Eu, and Yb exposure on renal rat NRK-52E and human HEK-293 cells for 8, 24, and 48 h in vitro. Cell viability studies using the XTT assay and microscopic investigations were combined with solubility and speciation studies using ICP-MS and TRLFS. Thermodynamic modeling was applied to predict the speciation of Ln in the cell culture medium. All Ln show a concentration- and time-dependent effect on both cell lines with Ce being the most potent element. In cell culture medium, the Ln are completely soluble and most probably complexed with proteins from fetal bovine serum. The results of this study underline the importance of combining biological, chemical, and spectroscopic methods in studying the effect of Ln on cells in vitro and may contribute to the improvement of the current risk assessment for Ln in the human body. Furthermore, they demonstrate that Ln seem to have no effect on renal cells in vitro at environmental trace concentrations. Nevertheless, especially Ce has the potential for harmful effects at elevated concentrations observed in mining and industrial areas.


Assuntos
Poluentes Ambientais/toxicidade , Rim/citologia , Elementos da Série dos Lantanídeos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Poluentes Ambientais/química , Humanos , Elementos da Série dos Lantanídeos/química , Ratos , Solubilidade , Termodinâmica
7.
J Inorg Biochem ; 175: 248-258, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802224

RESUMO

In case radioactive materials are released into the environment, their incorporation into our digestive system would be a significant concern. Trivalent f-elements, i.e., trivalent actinides and lanthanides, could potentially represent a serious health risk due to their chemo- and radiotoxicity, nevertheless the biochemical behavior of these elements are mostly unknown even to date. This study, therefore, focuses on the chemical speciation of trivalent f-elements in the human gastrointestinal tract. To simulate the digestive system artificial digestive juices (saliva, gastric juice, pancreatic juice and bile fluid) were prepared. The chemical speciation of lanthanides (as Eu(III)) and actinides (as Cm(III)) was determined experimentally by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and the results were compared with thermodynamic modeling. The results indicate a dominant inorganic species with phosphate/carbonate in the mouth, while the aquo ion is predominantly formed with a minor contribution of the enzyme pepsin in the stomach. In the intestinal tract the most significant species are with the protein mucin. We demonstrated the first experimental results on the chemical speciation of trivalent f-elements in the digestive media by TRLFS. The results highlight a significant gap in chemical speciation between experiments and thermodynamic modeling due to the limited availability of thermodynamic stability constants particularly for organic species. Chemical speciation strongly influences the in vivo behavior of metal ions. Therefore, the results of this speciation study will help to enhance the assessment of health risks and to improve decorporation strategies after ingestion of these (radio-)toxic heavy metal ions.


Assuntos
Cúrio/química , Európio/química , Trato Gastrointestinal/química , Modelos Químicos , Animais , Bovinos , Humanos , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA