RESUMO
Plague is a flea-borne zoonosis that affects a wide range of mammals and still causes outbreaks in human populations yearly across several countries. While crucial for proper treatment, early diagnosis is still a major challenge in low- and middle-income countries due to poor access to laboratory infrastructure in rural areas. To tackle this issue, we developed and evaluated a new Fraction 1 capsular antigen (F1)-based rapid diagnostic test (RDT) as an alternative method for plague serological diagnosis and surveillance in humans and other mammals. In this study, 187 serum samples from humans, dogs, rodents and rabbits were retrospectively assessed using the plague RDT method. To calculate its performance, results were compared to those obtained by traditional hemagglutination (HA) and ELISA, which are well-established methods in the plague routine serodiagnosis. Remarkably, the results from RDT were in full agreement with those from the ELISA and HA assays, resulting in 100% (CI 95% = 95.5-100%) of sensitivity and 100% (CI 95% = 96.6-100%) of specificity. Accordingly, the Cohen's Kappa test coefficient was 1.0 (almost perfect agreement). Moreover, the RDT showed no cross-reaction when tested with sera from individuals positive to other pathogens, such as Y. pseudotuberculosis, Yersinia enterocolitica, Anaplasma platys, Ehrlichia canis and Leishmania infantum. Although preliminary, this study brings consistent proof-of-concept results with high performance of the Plague RDT when compared to HA and ELISA. Although further human and animal population-based studies will be necessary to validate these findings, the data presented here show that the plague RDT is highly sensitive and specific, polyvalent to several mammal species and simple to use in field surveillance or point-of-care situations with instant results.
Assuntos
Peste , Yersinia pestis , Animais , Testes Diagnósticos de Rotina , Cães , Humanos , Mamíferos , Peste/diagnóstico , Peste/epidemiologia , Peste/veterinária , Coelhos , Estudos RetrospectivosRESUMO
BACKGROUND: Many pathogens, including Yersinia pestis, cannot be consistently and reliably cultured from blood. New approaches are needed to facilitate the detection of proteins, nucleic acid and microorganisms in whole blood samples to improve downstream assay performance. Detection of biomarkers in whole blood is difficult due to the presence of host proteins that obscure standard detection mechanisms. Nanotrap® particles are micron-sized hydrogel structures containing a dye molecule as the affinity bait and used to detect host biomarkers, viral nucleic acids and proteins as well as some bacterial markers. Nanotraps have been shown to bind and enrich a wide variety of biomarkers and viruses in clinically relevant matrices such as urine and plasma. Our objective was to characterize the binding ability of Nanotrap particle type CN3080 to Y. pestis bacteria, bacterial proteins and nucleic acids from whole human blood in order to potentially improve detection and diagnosis. RESULTS: CN3080 Nanotraps bind tightly to Yersinia bacteria, even after washing, and we were able to visualize the co-localized Nanotraps and bacteria by electron microscopy. These magnetic hydrogel Nanotraps were able to bind Yersinia DNA, supporting the utility of Nanotraps for enhancing nucleic acid-based detection methods. Nanotraps were capable of increasing Y. pestis nucleic acid yield by fourfold from whole human blood compared to standard nucleic acid extraction. Interestingly, we found CN3080 Nanotraps to have a high affinity for multiple components of the Yersinia type III secretion system (T3SS), including chaperone proteins, Yop effector proteins and virulence factor protein LcrV (V). Using Nanotraps as a rapid upstream sample-prep tool, we were able to detect LcrV in human blood by western blotting with minimal blood interference in contrast to direct western blotting of blood samples in which LcrV was obscured. We were able to computationally model the interaction of LcrV with the CN3080 Nanotrap dye and found that it had a low delta-G, suggesting high affinity. Importantly, Nanotraps were also able to enhance detection of secreted Yersinia proteins by mass spectrometry. CONCLUSION: Upstream use of magnetic CN3080 Nanotrap particles may improve the downstream workflow though binding and enrichment of biomarkers and speed of processing. Utilization of Nanotrap particles can improve detection of Yersinia pestis proteins and nucleic acid from whole human blood and contribute to downstream assays and diagnostics including molecular methods such as sequencing and PCR and protein-based methods.
Assuntos
Magnetismo , Nanotecnologia/métodos , Ácidos Nucleicos/química , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação , Yersinia pestis/genética , Bactérias , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomarcadores , Sangue/microbiologia , Western Blotting , DNA Bacteriano/química , Humanos , Hidrogéis , Fenômenos Magnéticos , Simulação de Acoplamento Molecular , Proteômica , RNA Ribossômico 16S/genéticaRESUMO
The Yersinia pestis capsular antigen F1 is widely used in plague laboratory diagnosis. Here, we describe the production of an F1 recombinant protein within reduced time and biosafety requirements. Its evaluation in hemagglutination tests indicated that the recombinant F1 can replace the conventional F1 protein for plague diagnosis.
Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Custos e Análise de Custo , Peste/diagnóstico , Peste/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Testes de Hemaglutinação/métodos , Masculino , Coelhos , Proteínas Recombinantes/imunologia , Fatores de TempoRESUMO
OBJECTIVES: In Madagascar, plague (Yersinia pestis infection) is endemic in the central highlands, maintained by the couple Rattus rattus/flea. The rat is assumed to die shortly after infection inducing migration of the fleas. However we previously reported that black rats from endemic areas can survive the infection whereas those from non-endemic areas remained susceptible. We investigate the hypothesis that lineages of rats can acquire resistance to plague and that previous contacts with the bacteria will affect their survival, allowing maintenance of infected fleas. For this purpose, laboratory-born rats were obtained from wild black rats originating either from plague-endemic or plague-free zones, and were challenged with Y. pestis. Survival rate and antibody immune responses were analyzed. RESULTS: Inoculation of low doses of Y. pestis greatly increase survival of rats to subsequent challenge with a lethal dose. During challenge, cytokine profiles support activation of specific immune response associated with the bacteria control. In addition, F1 rats from endemic areas exhibited higher survival rates than those from non-endemic ones, suggesting a selection of a resistant lineage. In Madagascar, these results support the role of black rat as long term reservoir of infected fleas supporting maintenance of plague transmission.
Assuntos
Proteínas de Bactérias , Reservatórios de Doenças , Insetos Vetores , Peste/transmissão , Sifonápteros/microbiologia , Yersinia pestis , Animais , Animais Selvagens , Madagáscar , Ratos , Yersinia pestis/imunologia , Yersinia pestis/patogenicidadeRESUMO
BACKGROUND: Yersinia pestis is a contributing agent to the epidemic disease, plague, which killed an estimated 200 million people during historical times. In this study, a rapid, cheap, sensitive, and specific technique, the lateral flow assay (F1 strips), has been successfully developed to detect this pathogen, by using paired monoclonal antibodies (MAbs) against Y. pestis capsule like fraction 1 (F1) protein. Compared with the polyclonal antibody (PAb) based F1 strips, the Mab-based F1 strips have a remarkable increased detection limitation (10 to 100 folds). Furthermore, besides the limitation and specificity evaluation, the application of this F1 strip on simulated clinical samples indicate the LFA can be a good candidate to detect plague. METHODS: Recombinant F1 antigen was expressed and purified from a series of works. The various anti-F1 monoclonal antibodies generated from hybridoma cells were screened with the ELISA technique. To evaluate the feasibility of this Y. pestis F1 test strip, the F1 protein/Y. pestis was spiked into simulated clinical samples such as human serum, mouse bronchoalveolar lavage fluids, and mouse blood to mimic natural infection status. Additionally, this technique was applied to detect the Y. pestis in the environment-captured rats, to evaluate the practical usefulness of the strips. RESULTS: By using this MAb-based-LFA technique, 4 ng/ml of recombinant F1-protein and 103 CFU/ml of Y. pestis could be detected in less than 10 mins, which is at least 10-folds than that of the PAb format. On the other hand, although various Yersinia strains were applied to the strips, only Y. pestis strain showed a positive result; all other Yersinia species did not produce a positive signal, indicating the high efficiency and specificity of the MAb-based F1-strips. CONCLUSION: Based on our findings, we suggest that the MAb-format-LFA will be valuable as a diagnostic tool for the detection of Y. pestis. This report shows that the F1 strip is sufficient to support not only the detection of plague in simulated clinical samples, but also it may be a good candidate to meet the epidemiological surveillance during an outbreak of the biological warfare.
Assuntos
Proteínas de Bactérias/sangue , Imunoensaio/métodos , Yersinia pestis/isolamento & purificação , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Líquido da Lavagem Broncoalveolar/microbiologia , Ouro/química , Humanos , Camundongos , Peste/diagnóstico , Peste/patologia , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Sensibilidade e Especificidade , Yersinia pestis/metabolismoRESUMO
Plague has led to millions of deaths in history and outbreaks continue to the present day. The efficacy limitations and safety concerns of the existing killed whole cell and live-attenuated vaccines call for the development of new vaccines. In this study, we evaluated the immunogenicity and safety of a novel subunit plague vaccine, comprising native F1 antigen and recombinant V antigen. The cynomolgus macaques in low- and high-dose vaccine groups were vaccinated at weeks 0, 2, 4 and 6, at dose levels of 15 µg F1 + 15 µg rV and 30 µg F1 + 30 µg rV respectively. Specific antibodies and interferon-γ and interleukin-2 expression in lymphocytes were measured. For safety, except for the general toxicity and local irritation, we made a systematic immunotoxicity study on the vaccine including immunostimulation, autoimmunity and anaphylactic reaction. The vaccine induced high levels of serum anti-F1 and anti-rV antibodies, and caused small increases of interferon-γ and interleukin-2 in monkeys. The vaccination led to a reversible increase in the number of peripheral blood eosinophils, the increases in serum IgE level in a few animals and histopathological change of granulomas at injection sites. The vaccine had no impact on general conditions, most clinical pathology parameters, percentages of T-cell subsets, organ weights and gross pathology of treated monkeys and had passable local tolerance. The F1 + rV subunit plague vaccine can induce very strong humoral immunity and low level of cellular immunity in cynomolgus macaques and has a good safety profile.
Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunogenicidade da Vacina , Vacina contra a Peste/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/toxicidade , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/toxicidade , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Feminino , Granuloma/induzido quimicamente , Granuloma/imunologia , Granuloma/patologia , Imunidade Celular/efeitos dos fármacos , Imunoglobulina E/sangue , Reação no Local da Injeção/imunologia , Reação no Local da Injeção/patologia , Injeções Intramusculares , Interferon gama/sangue , Interleucina-2/sangue , Macaca fascicularis , Masculino , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/toxicidade , Proteínas Citotóxicas Formadoras de Poros/administração & dosagem , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologiaRESUMO
Yersinia pestis, a causative agent of plague, has a plethora of armors to fight against major components of innate immunity and survive within host cells. Dendritic cells and macrophages are important antigen presenting cells for effective immune response. This report is focused on the changes in DC activation and TLR2 and TLR4 expression on macrophages induced by MAP of F1 and V antigens of Y. pestis. F1 and V MAPs bear potential synthetic T and B cell epitopes from F1 and V protein respectively. We evaluated these parameters in DC's isolated from spleen and lamina propria and macrophages isolated from peritoneal lavage of mice after intranasal immunization. F1 MAP and V MAP significantly increased the expression of CD80 and CD86 on CD11c(+) dendritic cells isolated from spleen and lamina propria as well as intracellular IL-12 levels. Similarly, in macrophages derived from peritoneal cavity, the above formulation enhanced TLR2 and TLR4 expression. Again after in vitro stimulation with F1 and V MAP these macrophages produced significantly high IL12 and TNFα. The study clearly indicates involvement of DC and macrophages for efficient antigen presentation to immune cells. From this study we conclude that F1MAP and VMAP ameliorate innate immune mechanism. These two synthetic constructs exert their effect via TLR2 and TLR4, leading to the production of proinflammatory cytokines by macrophages and are able to increase DC activation, that could be helpful in generation of adaptive immunity as well as is important strong immune response.