Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
mSphere ; 9(9): e0034724, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39189775

RESUMO

Flavin adenine dinucleotide (FAD) is an essential cofactor for numerous flavoenzymes present in all living organisms. The biosynthesis of FAD from riboflavin involves two sequential reactions catalyzed by riboflavin kinase and flavin adenine dinucleotide synthase (FADS). Entamoeba histolytica, the protozoan parasite responsible for amebiasis, apparently lacks a gene encoding FADS that share similarity with bacterial and eukaryotic canonical FADS, yet it can synthesize FAD. In this study, we have identified the gene responsible for FADS and thoroughly characterized physiological and biochemical properties of FADS from E. histolytica. Phylogenetic analysis revealed that the gene was likely laterally transferred from archaea. The kinetic properties of recombinant EhFADS were consistent with the notion that EhFADS is of archaeal origin, exhibiting KM and kcat values similar to those of the arachaeal enzyme while significantly differing from the human counterpart. Repression of gene expression of EhFADS by epigenetic gene silencing caused substantial reduction in FAD levels and parasite growth, underscoring the importance of EhFADS for the parasite. Furthermore, we demonstrated that EhFADS gene silencing reduced thioredoxin reductase activity, which requires FAD as a cofactor and makes the ameba more susceptible to metronidazole. In summary, this study unveils unique evolutionary and biochemical features of EhFADS and underscores its significance as a promising drug target in combating human amebiasis.IMPORTANCEFAD is important for all forms of life, yet its role and metabolism are still poorly studied in E. histolytica, the protozoan parasite causing human amebiasis. Our study uncovers the evolutionary unique key enzyme, archaeal-type FADS for FAD biosynthesis from E. histolytica for the first time. Additionally, we showed the essentiality of this enzyme for parasite survival, highlighting its potential as target for drug development against E. histolytica infections.


Assuntos
Archaea , Entamoeba histolytica , Flavina-Adenina Dinucleotídeo , Filogenia , Entamoeba histolytica/genética , Entamoeba histolytica/enzimologia , Entamoeba histolytica/efeitos dos fármacos , Flavina-Adenina Dinucleotídeo/metabolismo , Archaea/genética , Archaea/enzimologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Cinética , Antiprotozoários/farmacologia , Humanos , Nucleotidiltransferases
2.
Structure ; 32(7): 953-965.e5, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38688286

RESUMO

Human flavin adenine dinucleotide synthase (hFADS) is a bifunctional, multi-domain enzyme that exhibits both flavin mononucleotide adenylyltransferase and pyrophosphatase activities. Here we report the crystal structure of full-length hFADS2 and its C-terminal PAPS domain in complex with flavin adenine dinucleotide (FAD), and dissect the structural determinants underlying the contribution of each individual domain, within isoforms 1 and 2, to each of the two enzymatic activities. Structural and functional characterization performed on complete or truncated constructs confirmed that the C-terminal domain tightly binds FAD and catalyzes its synthesis, while the combination of the N-terminal molybdopterin-binding and KH domains is the minimal essential substructure required for the hydrolysis of FAD and other ADP-containing dinucleotides. hFADS2 associates in a stable C2-symmetric dimer, in which the packing of the KH domain of one protomer against the N-terminal domain of the other creates the adenosine-specific active site responsible for the hydrolytic activity.


Assuntos
Domínio Catalítico , Flavina-Adenina Dinucleotídeo , Modelos Moleculares , Ligação Proteica , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química , Cristalografia por Raios X , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Multimerização Proteica , Sítios de Ligação , Domínios Proteicos , Sequência de Aminoácidos
3.
Synth Syst Biotechnol ; 9(3): 503-512, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38680946

RESUMO

Vitamin B2 is an essential water-soluble vitamin. For most prokaryotes, a bifunctional enzyme called FAD synthase catalyzes the successive conversion of riboflavin to FMN and FAD. In this study, the plasmid pNEW-AZ containing six key genes for the riboflavin synthesis was transformed into strain R2 with the deleted FMN riboswitch, yielding strain R5. The R5 strain could produce 540.23 ± 5.40 mg/L riboflavin, which was 10.61 % higher than the R4 strain containing plasmids pET-AE and pAC-Z harboring six key genes. To further enhance the production of riboflavin, homology matching and molecular docking were performed to identify key amino acid residues of FAD synthase. Nine point mutation sites were identified. By comparing riboflavin kinase activity, mutations of T203D and N210D, which respectively decreased by 29.90 % and 89.32 % compared to wild-type FAD synthase, were selected for CRISPR/Cas9 gene editing of the genome, generating engineered strains R203 and R210. pNEW-AZ was transformed into R203, generating R6. R6 produced 657.38 ± 47.48 mg/L riboflavin, a 21.69 % increase compared to R5. This study contributes to the high production of riboflavin in recombinant E. coli BL21.

4.
Life (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575116

RESUMO

FAD synthase is the last enzyme in the pathway that converts riboflavin into FAD. In Saccharomyces cerevisiae, the gene encoding for FAD synthase is FAD1, from which a sole protein product (Fad1p) is expected to be generated. In this work, we showed that a natural Fad1p exists in yeast mitochondria and that, in its recombinant form, the protein is able, per se, to both enter mitochondria and to be destined to cytosol. Thus, we propose that FAD1 generates two echoforms-that is, two identical proteins addressed to different subcellular compartments. To shed light on the mechanism underlying the subcellular destination of Fad1p, the 3' region of FAD1 mRNA was analyzed by 3'RACE experiments, which revealed the existence of (at least) two FAD1 transcripts with different 3'UTRs, the short one being 128 bp and the long one being 759 bp. Bioinformatic analysis on these 3'UTRs allowed us to predict the existence of a cis-acting mitochondrial localization motif, present in both the transcripts and, presumably, involved in protein targeting based on the 3'UTR context. Here, we propose that the long FAD1 transcript might be responsible for the generation of mitochondrial Fad1p echoform.

5.
Methods Mol Biol ; 2280: 69-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751430

RESUMO

Here we describe a protocol for a one-step purification of a soluble form of human FAD synthase (isoform 2; hFADS2), overexpressed as a 6-His-tagged fusion protein in Escherichia coli, with a yield of about 15 mg from 1 L of transformed bacterial culture.Following a desalting procedure, the protein is obtained in its FAD-bound form (about 0.8 molecules of FAD per 1 protein monomer). A simple method is also proposed here, for the rapid estimation of the [FAD ]/[protein monomer] ratio, starting from the typical flavoprotein spectrum of the purified protein fraction.The procedure described gives the protein at a quite high grade of purity (about 95%) and in its bifunctional (2.7.7.2/3.6.1.18) enzymatically active form, useful for further kinetical and molecular characterization.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos Dessaturases/genética , Proteínas Recombinantes/isolamento & purificação , Cromatografia de Afinidade , Clonagem Molecular , Dessaturase de Ácido Graxo Delta-5 , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Dessaturases/isolamento & purificação , Ácidos Graxos Dessaturases/metabolismo , Humanos , Multimerização Proteica , Proteínas Recombinantes/metabolismo
6.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33452877

RESUMO

In bacteria, the biosynthesis of the cofactor flavin adenine dinucleotide (FAD), important in many physiological responses, is catalyzed by the bifunctional enzyme FAD synthase (FADSyn) which converts riboflavin into FAD by both kinase and adenylylation activity. The in silico 3D structure of a putative FADSyn from Mycoplasma hyopneumoniae (MhpFADSyn), the etiological agent of enzootic pneumonia was already reported, nevertheless, the in vitro functional characterization was not yet demonstrated. Our phylogenetic analysis revealed that MhpFADSyn is close related to the bifunctional FADSyn from Corynebacterium ammoniagenes. However, only the domain related to adenylylation was assigned by InterPro database. The activity of MhpFADSyn was evaluated through in vitro enzymatic assays using cell extracts from IPTG-inducible heterologous expression of MhpFADSyn in Escherichia coli. The flavoproteins were analyzed by HPLC and results showed that IPTG-induced cell lysate resulted in the formation of twofold increased amounts of FAD if compared to non IPTG-induced cells. Consumption of riboflavin substrate was also threefold greater in IPTG-induced lysate compared to non IPTG-induced cell extract. Thus, the recombinant MhpFADSyn protein could be associated to FAD biosynthesis. These findings contribute to expand the range of potential drug targets in diseases control and unveil metabolic pathways that could be attribute to mycoplasmas.


Assuntos
Mycoplasma hyopneumoniae/enzimologia , Nucleotidiltransferases/metabolismo , Escherichia coli/genética , Mycoplasma hyopneumoniae/classificação , Nucleotidiltransferases/genética , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466340

RESUMO

The last step in the biosynthesis of flavin adenine dinucleotide (FAD) is considered a target for the design of antimicrobial drugs because it is carried out by two non-homologous proteins in eukaryotic and prokaryotic organisms. Monofunctional FMN: adenylyltransferases (FMNAT) in Eukarya and FMNAT modules of bifunctional FAD synthases (FADS) in Prokarya belong to different structural families with dissimilar chemistry and binding modes for the substrates. In this study, we analyzed the relevance of the hydrophobic environment of the flavin isoalloxazine in the FMNAT active site of Corynebacterium ammoniagenes FADS (CaFADS) through the mutational analysis of its F62, Y106, and F128 residues. They form the isoalloxazine binding cavity and are highly conserved in the prokaryotic FADS family. The spectroscopic, steady-state kinetics and thermodynamic data presented indicate that distortion of aromaticity at the FMNAT isoalloxazine binding cavity prevents FMN and FAD from correct accommodation in their binding cavity and, as a consequence, decreases the efficiency of the FMNAT activity. Therefore, the side-chains of F62, Y106 and F128 are relevant in the formation of the catalytic competent complex during FMNAT catalysis in CaFADS. The introduced mutations also modulate the activity occurring at the riboflavin kinase (RFK) module of CaFADS, further evidencing the formation of quaternary assemblies during catalysis.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Nucleotidiltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium/enzimologia , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fenilalanina/química , Ligação Proteica , Tirosina/química
8.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835305

RESUMO

FAD synthase (FADS, or FMN:ATP adenylyl transferase) coded by the FLAD1 gene is the last enzyme in the pathway of FAD synthesis. The mitochondrial isoform 1 and the cytosolic isoform 2 are characterized by the following two domains: the C-terminal PAPS domain (FADSy) performing FAD synthesis and pyrophosphorolysis; the N-terminal molybdopterin-binding domain (FADHy) performing a Co++/K+-dependent FAD hydrolysis. Mutations in FLAD1 gene are responsible for riboflavin responsive and non-responsive multiple acyl-CoA dehydrogenases and combined respiratory chain deficiency. In patients harboring frameshift mutations, a shorter isoform (hFADS6) containing the sole FADSy domain is produced representing an emergency protein. With the aim to ameliorate its function we planned to obtain an engineered more efficient hFADS6. Thus, the D238A mutant, resembling the D181A FMNAT "supermutant" of C. glabrata, was overproduced and purified. Kinetic analysis of this enzyme highlighted a general increase of Km, while the kcat was two-fold higher than that of WT. The data suggest that the FAD synthesis rate can be increased. Additional modifications could be performed to further improve the synthesis of FAD. These results correlate with previous data produced in our laboratory, and point towards the following proposals (i) FAD release is the rate limiting step of the catalytic cycle and (ii) ATP and FMN binding sites are synergistically connected.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Mutação de Sentido Incorreto , Nucleotidiltransferases/química , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
9.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614972

RESUMO

Bifunctional FAD synthases (FADSs) catalyze FMN (flavin mononucleotide) and FAD (flavinadenine dinucleotide) biosynthesis at their C-riboflavin kinase (RFK) and N-FMN:adenylyltransferase (FMNAT) modules, respectively. Biophysical properties and requirements for their FMNAT activity differ among species. Here, we evaluate the relevance of the integrity of the binding site of the isoalloxazine of flavinic substrates for FMNAT catalysis in Corynebacterium ammoniagenes FADS (CaFADS). We have substituted P56 and P58, belonging to a conserved motif, as well as L98. These residues shape the isoalloxazine FMNAT site, although they are not expected to directly contact it. All substitutions override enzyme ability to transform substrates at the FMNAT site, although most variants are able to bind them. Spectroscopic properties and thermodynamic parameters for the binding of ligands indicate that mutations alter their interaction modes. Substitutions also modulate binding and kinetic properties at the RFK site, evidencing the crosstalk of different protomers within CaFADS assemblies during catalysis. In conclusion, despite the FMNAT site for the binding of substrates in CaFADS appearing as a wide open cavity, it is finely tuned to provide the competent binding conformation of substrates. In particular, P56, P58 and L98 shape the isoalloxazine site to place the FMN- and FAD-reacting phosphates in optimal geometry for catalysis.


Assuntos
Corynebacterium/enzimologia , Óxido Nítrico Sintase/química , Nucleotidiltransferases/química , Termodinâmica , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico/genética , Corynebacterium/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Ligantes , Modelos Moleculares , Óxido Nítrico Sintase/genética , Nucleotidiltransferases/genética , Especificidade por Substrato
10.
Int J Biol Macromol ; 138: 986-995, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351152

RESUMO

FAD synthase, the last enzyme of the pathway converting riboflavin to FAD, exists in humans in different isoforms, with isoforms 1, 2 and 6 being characterized at the functional and molecular levels. Isoform 2, the cytosolic and most abundant FADS, consists of two domains: a PAPS reductase C-terminus domain (here named FADSy) responsible for FAD synthesis, and an N-terminus molybdopterin-binding resembling domain (MPTb - here named FADHy), whose FAD hydrolytic activity is hidden unless both Co2+ and chemical mercurial reagents are added to the enzyme. To investigate the hFADS2 hydrolytic function under conditions closer to the physiological context, the hydrolytic activity was further characterized. Co2+ induced FAD hydrolysis was strongly stimulated in the presence of K+, reaching a Vmax higher than that of FAD synthesis. The pH dependence together with the inhibition of the hydrolysis by NaF and KI allow excluding that the reaction occurs via a NUDIX type catalysis. The K0.5 for K+ or Co2+ was 7.2 or 0.035 mM, respectively. Other monovalent or divalent cations can partially substitute K+ or Co2+. Reduced glutathione stimulated whereas NADH inhibited the hydrolytic activity. The latter aspects correlate with an interconnection of the homeostasis of NAD and FAD.


Assuntos
Ácidos Graxos Dessaturases/química , Proteínas Recombinantes de Fusão , Sequência de Aminoácidos , Catálise , Ácidos Graxos Dessaturases/metabolismo , Fluorometria/métodos , Humanos , Hidrólise , Cinética
11.
J Mol Biol ; 431(15): 2762-2776, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31132361

RESUMO

Listeria monocytogenes is riboflavin auxotrophic, but it has two genes envisaged to transform riboflavin into FMN and FAD after its uptaked by specialized transporters. One encodes a bifunctional type I FAD synthase (FADS, herein LmFADS-1), while the other produces a protein similar to type I at the FMN:ATP adenylyltransferase (FMNAT) site but with a shorter C-terminal that lacks any riboflavin kinase (RFK) motif. This second protein is rare among bacteria and has been named FADS type II (LmFADS-2). Here we present a biochemical and biophysical study of LmFADS-1 and LmFADS-2 by integrating kinetic and thermodynamic data together with sequence and structural prediction methods to evaluate their occurrence in Listeria, as well as their function and molecular properties. Despite LmFADS-1 similarities to other type I FADSs, (i) its RFK activity has not riboflavin substrate inhibition and occurs under reducing and oxidizing conditions, (ii) its FMNAT activity requires strong reducing environment, and (iii) binding of reaction products, but not substrates, favors binding of the second ligand. LmFADS-2 produces FAD under oxidizing and reducing environments, but its C-terminus module function remains unknown. Listeria species conserve both FADSs, being sequence identity high within L. monocytogenes strains. Our data exemplify alternative strategies for FMN and FAD biosynthesis and homeostasis, envisaging that in Listeria two FADSs might be required to fulfill the supply of flavin cofactors under niches that can go from saprophytism to virulence. As FADSs are attractive antimicrobial targets, understanding of FADSs traits in different species is essential to help in the discovery of specific antimicrobials.


Assuntos
Vias Biossintéticas , Flavinas/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Bactérias/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Listeriose/microbiologia , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato
12.
J Inherit Metab Dis ; 42(4): 608-619, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30680745

RESUMO

Riboflavin (vitamin B2), a water-soluble vitamin, is an essential nutrient in higher organisms as it is not endogenously synthesised, with requirements being met principally by dietary intake. Tissue-specific transporter proteins direct riboflavin to the intracellular machinery responsible for the biosynthesis of the flavocoenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavocoenzymes play a vital role in ensuring the functionality of a multitude of flavoproteins involved in bioenergetics, redox homeostasis, DNA repair, chromatin remodelling, protein folding, apoptosis, and other physiologically relevant processes. Hence, it is not surprising that the impairment of flavin homeostasis in humans may lead to multisystem dysfunction including neuromuscular disorders, anaemia, abnormal fetal development, and cardiovascular disease. In this review, we provide an overview of riboflavin absorption, transport, and metabolism. We then focus on the clinical and biochemical features associated with biallelic FLAD1 mutations leading to FAD synthase deficiency, the only known primary defect in flavocoenzyme synthesis, in addition to providing an overview of clinical disorders associated with nutritional deficiency of riboflavin and primary defects of riboflavin transport. Finally, we give a brief overview of disorders of the cellular flavoproteome. Because riboflavin therapy may be beneficial in a number of primary or secondary disorders of the cellular flavoproteome, early recognition and prompt management of these disorders is imperative.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/genética , Nucleotidiltransferases/deficiência , Riboflavina/metabolismo , Animais , Transporte Biológico/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Homeostase , Humanos , Proteínas de Membrana Transportadoras/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
13.
JIMD Rep ; 45: 37-44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30311138

RESUMO

Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is a clinically heterogeneous disorder affecting fatty acid and amino acid metabolism. Presentations range from a severe neonatal form with hypoglycemia, metabolic acidosis, and hepatomegaly with or without congenital anomalies to later-onset lipid storage myopathy. Genetic testing for MADD traditionally comprises analysis of ETFA, ETFB, and ETFDH. Patients may respond to pharmacological doses of riboflavin, particularly those with late-onset MADD due to variants in ETFDH. Increasingly other genes involved in riboflavin transport and flavoprotein biosynthesis are recognized as causing a MADD phenotype. Flavin adenine dinucleotide synthase (FADS) deficiency caused by biallelic variants in FLAD1 has been identified in nine previous cases of MADD. FLAD1 missense mutations have been associated with a riboflavin-responsive phenotype; however the effect of riboflavin with biallelic loss of function FLAD1 mutations required further investigation. Herein we describe a novel, truncating variant in FLAD1 causing MADD in an 8-year-old boy. Fibroblast studies showed a dramatic reduction in FADS protein with corresponding reduction in the FAD synthesis rate and FAD cellular content, beyond that previously documented in FLAD1-related MADD. There was apparent biochemical and clinical response to riboflavin treatment, beyond that previously reported in cases of biallelic loss of function variants in FLAD1. Early riboflavin treatment may have attenuated an otherwise severe phenotype.

14.
Neuromuscul Disord ; 28(9): 787-790, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061063

RESUMO

Inherited defects of vitamin B2 (riboflavin) metabolism may cause different phenotypes with common biochemical markers of multiple acyl-CoA dehydrogenase deficiency (MADD). Most recently, mutations in FLAD1, which encodes flavin adenine dinucleotide (FAD) synthase, has been implicated in MADD with combined respiratory chain deficiency in nine patients. Here, we describe two siblings with FAD synthase deficiency, who were diagnosed post-mortem upon suspicion of this newly-described disease. Hypotonia was evident at two months of age in both infants, followed by feeding difficulties, respiratory distress and death in six months despite partial response to riboflavin. The older sibling had documented lipid storage myopathy and biochemical markers of MADD. Our observations support the previous reports of unexpected riboflavin-responsiveness in frameshift mutations in the second exon of FLAD1 and suggest dysmorphic auricular helix and hypospadias as possible additional clinical features. More reports and studies are needed to better describe and treat FAD synthase deficiency.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Hipotonia Muscular/genética , Nucleotidiltransferases/genética , Evolução Fatal , Feminino , Humanos , Lactente , Masculino , Irmãos , Turquia
15.
Molecules ; 23(1)2018 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316637

RESUMO

FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L-1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (kcat about 2.8 min-1), as well as FAD pyrophosphorolysis in a strictly Mg2+-dependent manner. The synthesis of FAD is inhibited by HgCl2. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.


Assuntos
Nucleotidiltransferases/química , Domínio Catalítico , Clonagem Molecular , Cisteína/química , Escherichia coli , Flavina-Adenina Dinucleotídeo/química , Expressão Gênica , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Cinética , Modelos Moleculares , Nucleotidiltransferases/biossíntese , Oxirredução , Conformação Proteica em alfa-Hélice
16.
Biochem Biophys Res Commun ; 465(3): 443-9, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26277395

RESUMO

FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is involved in the biochemical pathway for converting riboflavin into FAD. Human FADS exists in different isoforms. Two of these have been characterized and are localized in different subcellular compartments. hFADS2 containing 490 amino acids shows a two domain organization: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and a resembling molybdopterin-binding (MPTb) domain. By a multialignment of hFADS2 with other MPTb containing proteins of various organisms from bacteria to plants, the critical residues for hydrolytic function were identified. A homology model of the MPTb domain of hFADS2 was built, using as template the solved structure of a T. acidophilum enzyme. The capacity of hFADS2 to catalyse FAD hydrolysis was revealed. The recombinant hFADS2 was able to hydrolyse added FAD in a Co(2+) and mersalyl dependent reaction. The recombinant PAPS reductase domain is not able to perform the same function. The mutant C440A catalyses the same hydrolytic function of WT with no essential requirement for mersalyl, thus indicating the involvement of C440 in the control of hydrolysis switch. The enzyme C440A is also able to catalyse hydrolysis of FAD bound to the PAPS reductase domain, which is quantitatively converted into FMN.


Assuntos
Coenzimas/química , Coenzimas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Hidrolases/química , Metaloproteínas/química , Metaloproteínas/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Pteridinas/química , Pteridinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/ultraestrutura , Simulação por Computador , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/química , Humanos , Hidrolases/metabolismo , Metaloproteínas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Cofatores de Molibdênio , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleotidiltransferases/ultraestrutura , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Front Chem ; 3: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954742

RESUMO

The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD "chaperone." The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

18.
Biochim Biophys Acta ; 1844(12): 2086-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135855

RESUMO

FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399-C402, C303-C312, both in the PAPS domain), and two unstable disulfides (C39-C50; C440-C464). Whereas the C39-C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain.

19.
J Biol Chem ; 288(40): 29069-80, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23946482

RESUMO

FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.


Assuntos
Núcleo Celular/metabolismo , Flavina-Adenina Dinucleotídeo/biossíntese , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Homeostase , Humanos , Hidrólise , Immunoblotting , Fígado/citologia , Fígado/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Nucleotidiltransferases/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA