Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 351: 122867, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914303

RESUMO

AIMS: FKBP5 encodes FKBP51, which has been implicated in stress-related psychiatric disorders, and its expression is often increased under chronic stress, contributing to mental dysfunctions. However, the precise role of FKBP51 in brain inflammation remains unclear. This study aimed to investigate the role of FKBP51 in microglia-mediated inflammatory responses in the central nervous system. MAIN METHODS: We employed a peripheral lipopolysaccharide (LPS) administration model to compare microglial activation and cytokine gene expression between Fkbp5 knockout (Fkbp5-KO) and wild-type (WT) male mice. Additionally, we used both BV2 and primary microglia in vitro to examine how Fkbp5 deletion influenced inflammation-related pathways and microglial functions. KEY FINDINGS: This study revealed that systemic LPS-induced microglial activation was significantly attenuated in Fkbp5-KO mice compared with WT mice. In Fkbp5-KO mice following the LPS challenge, there was a notable decrease in the expression of pro-inflammatory genes, coupled with an increase in the anti-inflammatory gene Arg1. Furthermore, Fkbp5 knockdown in BV2 microglial cells led to reduced expression of LPS-induced inflammatory markers, and targeted inhibition of NF-κB activation, while Akt signaling remained unaffected. Similar results were observed in Fkbp5-KO primary microglia, which exhibited not only decreased microglial activation but also a significant reduction in phagocytic activity in response to LPS stimulation. SIGNIFICANCE: This study highlights the critical role of FKBP51 in LPS-induced microglial activation and neuroinflammation. It shows that reducing FKBP51 levels attenuates inflammation through NF-κB signaling in microglia. This suggests that FKBP51 is a potential target for alleviating neuroinflammation-induced stress responses.


Assuntos
Lipopolissacarídeos , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Transdução de Sinais , Proteínas de Ligação a Tacrolimo , Animais , Masculino , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética
2.
ChemMedChem ; : e202400264, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818693

RESUMO

The FK506 binding protein 51 (FKBP51) is an appealing drug target due to its role in several diseases such as depression, anxiety, chronic pain and obesity. Towards this, selectivity versus the close homolog FKBP52 is essential. However, currently available FKBP51-selective ligands such as SAFit2 are too large and lack drug-like properties. Here, we present a structure activity relationship (SAR) analysis of the pipecolic ester moiety of SAFit1 and SAFit2, which culminated in the discovery of the 1,4-pyrazolyl derivative 23 d, displaying a binding affinity of 0.077 µM for FKBP51, reduced molecular weight (541.7 g/mol), lower hydrophobicity (cLogP=3.72) and higher ligand efficiency (LE=0.25). Cocrystal structures revealed the importance of the 1,4- and 1,3,4- substitution patterns of the pyrazole ring versus the 1,4,5 arrangement.

3.
Acta Pharmacol Sin ; 45(9): 1898-1911, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38760545

RESUMO

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.


Assuntos
Hidroximetilglutaril-CoA Sintase , Fígado , Camundongos Endogâmicos C57BL , Tacrolimo , Animais , Tacrolimo/farmacologia , Camundongos , Masculino , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Humanos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Imunossupressores/farmacologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Linhagem Celular
4.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579621

RESUMO

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas de Ligação a Tacrolimo , Humanos , Ligação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares , Fatores de Transcrição/metabolismo
5.
Bioorg Med Chem Lett ; 104: 129728, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582133

RESUMO

Antascomicin B is a natural product that similarly to the macrolides FK506 and Rapamycin binds to the FK506-binding protein 12 (FKBP12). FK506 and Rapamycin act as molecular glues by inducing ternary complexes between FKBPs and additional target proteins. Whether Antascomicin B can induce ternary complexes is unknown. Here we show that Antascomicin B binds tightly to larger human FKBP homologs. The cocrystal structure of FKBP51 in complex with Antascomicin B revealed that large parts of Antascomicin B are solvent-exposed and available to engage additional proteins. Cellular studies demonstrated that Antascomicin B enhances the interaction between human FKBP51 and human Akt. Our studies show that molecules with molecular glue-like properties are more prominent in nature than previously thought. We predict the existence of additional 'orphan' molecular glues that evolved to induce ternary protein complexes but where the relevant ternary complex partners are unknown.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a Tacrolimo , Tacrolimo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Tacrolimo/farmacologia , Tacrolimo/análogos & derivados , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
6.
Cell Biosci ; 14(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167156

RESUMO

BACKGROUND AND AIMS: Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS: Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS: Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS: Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA