Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Int J Vet Sci Med ; 12(1): 134-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359867

RESUMO

Foot-and-Mouth Disease (FMD) is a contagious, blistering disease caused by the Foot-and-Mouth Disease virus (FMDV), which affects livestock globally. Currently, no commercial antiviral agent is available for effective disease control. This study investigated the antiviral potential of natural-derived alkaloids against FMDV in BHK-21 cells. Twelve alkaloids were assessed for their antiviral activities at various stages of FMDV infection, including pre-viral entry, post-viral entry, and prophylactic assays, as well as attachment and penetration assays by evaluating cytopathic effect reduction and directed-virucidal effects. The results showed that ipecac alkaloids, cephaeline (CPL) and emetine (EMT), exhibited dual effects with robust antiviral efficacy by reducing cytopathic effect and inhibiting FMDV replication in a dose-dependent manner. Evaluation through immunoperoxidase monolayer assay and RT-PCR indicated effectiveness at post-viral entry stage, with sub-micromolar EC50 values for CPL and EMT at 0.05 and 0.24 µM, respectively, and high selective indices. Prophylactic effects prevented infection with EC50 values of 0.23 and 0.64 µM, respectively. Directed-virucidal effects demonstrated significant reduction of extracellular FMDV, with CPL exhibiting a dose-dependent effect. Furthermore, the replicase (3Dpol) inhibition activity was identified using the FMDV minigenome assay, which revealed strong inhibition with IC50 values of 0.15 µM for CPL and 4.20 µM for EMT, consistent with the decreased negative-stranded RNA production. Molecular docking confirmed the interaction of CPL and EMT with residues in the active site of FMDV 3Dpol. In conclusion, CPL and EMT exhibited promising efficacy through their dual effects and provide an alternative approach for controlling FMD in livestock.

2.
Vet Med Sci ; 10(5): e1569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39287214

RESUMO

BACKGROUND: Foot-and-mouth disease virus (FMDV) is an important pathogen of the MicroRNA virus family. Infection of livestock can cause physical weakness, weight loss, reduced milk production, and a significant reduction in productivity for an extended period. It also causes a high mortality rate in young animals, seriously affecting livestock production. The host range of FMDV is mainly limited to cloven-hoofed animals such as cattle and sheep, while odd-toed ungulates such as horses and donkeys have natural resistance to FMDV. The mechanism underlying this resistance in odd-toed ungulates remains unclear. OBJECTIVE: This study aimed to analyze the differences between FMDV-infected cattle and horses to provide valuable insights into the host-FMDV interaction mechanisms, thereby contributing to the control of foot-and-mouth disease and promoting the development of the livestock industry. METHODS: We observed the distribution of integrins, which help FMDV enter host cells, in the nasopharyngeal tissues of cattle and horses using immunohistochemistry. Then, we employed high-throughput RNA sequencing (RNA-Seq) to study the changes in host gene expression in the nasopharyngeal epithelial tissues of cattle and horses after FMDV infection. We performed enrichment analysis of GO and KEGG pathways after FMDV infection and validated related genes through qPCR. RESULTS: The immunohistochemical results showed that both cattle and horses had four integrin receptors that could assist FMDV entry into host cells. The transcriptome analysis revealed that after FMDV infection, pro-apoptotic genes such as caspase-3 (CASP3) and cytochrome C (CYCS) were upregulated in cattle, while apoptosis-inhibiting genes such as NAIP and BCL2A1 were downregulated. In contrast, the expression trend of related genes in horses was opposite to that in cattle. Additionally, autophagy-related genes such as beclin 1, ATG101, ATG4B, ATG4A, ATG13, and BCL2A1 were downregulated in cattle after FMDV infection, indicating that cattle did not clear the virus through autophagy. However, key autophagy genes including ATG1, ATG3, ATG9, ATG12, and ATG16L1 were significantly upregulated in horses after viral infection. CONCLUSION: Both water buffaloes and Mongolian horses express integrin receptors that allow FMDV entry into cells. Therefore, the resistance of Mongolian horses to FMDV may result from more changes in intracellular mechanisms, including processes such as autophagy and apoptosis. Significant differences were observed between water buffaloes and Mongolian horses in these processes, suggesting that these processes influence FMDV replication and synthesis.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , RNA-Seq , Animais , Febre Aftosa/virologia , Bovinos , Vírus da Febre Aftosa/fisiologia , Vírus da Febre Aftosa/genética , Doenças dos Bovinos/virologia , Doenças dos Bovinos/genética , Doenças dos Bovinos/metabolismo , Cavalos , RNA-Seq/veterinária , Doenças dos Cavalos/virologia , Doenças dos Cavalos/genética , Doenças dos Cavalos/metabolismo
3.
Viruses ; 16(9)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339914

RESUMO

Foot-and-mouth disease (FMD) is one of the most infectious viral transboundary diseases of livestock, which causes devastating global economic losses. Different enzyme-linked immunosorbent assays (ELISAs) are used for sero-surveillance of the foot-and-mouth disease virus (FMDV). However, more sensitive, accurate, and convenient ELISAs are still required to detect antibodies against FMDV serotypes. The primary goal of this study was to establish serotype-specific monoclonal antibody (mAb)-based blocking ELISAs (mAb-bELISAs) that would provide better performance characteristics or be equivalent in performance characteristics compared with a conventional polyclonal antibody (pAb)-based competitive ELISA (pAb-cELISA). Four mAb-bELISAs were developed using FMDV serotype-specific mAbs for the detection of anti-FMDV/O/A/Asia1/SAT2 antibodies. Using a 50% cut-off, all four mAb-bELISAs exhibited species-independent 99.74%, 98.01%, 96.59%, and 98.55% diagnostic specificity (DSp) and 98.93%, 98.25%, 100%, and 87.50% diagnostic sensitivity (DSe) for FMDV serotypes O, A, Asia1, and SAT2, respectively. In addition, a 100% DSe of serotypes O- and SAT2-specific mAb-bELISAs was observed for porcine sera when the cut-off was 30%. All mAb-bELISAs developed in this study displayed high repeatability/reproducibility without cross-reactivity. Finally, the diagnostic performance of mAb-bELISAs was found to be better than or equivalent to compared with pAb-cELISAs, suggesting that mAb-bELISAs can be used to replace existing pAb-ELISAs for the detection of antibodies against these four FMDV serotypes.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Aftosa , Febre Aftosa , Sensibilidade e Especificidade , Sorogrupo , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/classificação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Febre Aftosa/diagnóstico , Febre Aftosa/imunologia , Febre Aftosa/virologia , Suínos , Bovinos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Camundongos , Reprodutibilidade dos Testes
4.
Virol Sin ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293543

RESUMO

Foot-and-mouth disease (FMD) is one of the most important transboundary animal diseases caused by foot-and-mouth disease virus (FMDV), leading to significant economic losses worldwide. The first report of PanAsia lineage of FMDV in China was in 1999. Since 2011, 18 outbreaks attributed to PanAsia lineage viruses have been reported across 7 provinces or municipality in China. Phylogenetic analysis indicated that these PanAsia strains were clustered into three distinct clades (clade 1, clade 2, and clade 3), with nucleotide homology ranging from 91.4% to 100%. The outbreaks of FMD caused by clade 1 strains occurred around 1999 when this lineage was prevalent globally. Clade 2 strains dominated from 2011 to 2013, while clade 3 strains were prevalent during 2018-2019, sharing only 93% homology with clade 2 strains and 91% with clade 1 strains. Tracing analysis showed that these outbreaks represented 3 distinct introductions of PanAsia viruses into China. Virus neutralization tests (VNT) have demonstrated that current commercial vaccines are effective to protect susceptible animals against these strains (r1 > 0.3). However, the growing demand for livestock has promoted animal movement and encouraged the exchange of products, services, and materials between countries, thereby heightening the risk of exotic strain incursions. Therefore, it is imperative to reinforce border controls and limit animal movements among various Asian countries continually to reduce the risk of new transboundary diseases, such as FMD incursion. Additionally, PanAsia-2 strains need to be taken seriously to prevent its incursions, and the relevant vaccines against PanAsia-2 strains needs to be stockpiled in preparation for any possible incursion.

5.
Microb Pathog ; 195: 106908, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218377

RESUMO

Outbreaks of the foot-and-mouth disease (FMD) have major economic impact on the global livestock industry by affecting the animal health and product safety. L-protease, a non-structural protein of FMDV, is a papain-like cysteine proteinase involved in viral protein processing as well as cleavage of host proteins for promoting the virus growth. FMDV synthesizes two forms of leader proteinase, Lpro (Labpro and Lbpro), where the deletion of Labpro is lethal and Lbpro deletion is reported to be attenuated. Defective replicons have been used by trans-complementing the deleted gene to produce one time replicating virus; thus, the bio-safety procedure can be compromised in the production units. Attempts are made to rescue of ΔLbproFMDV Asia1 virus by co-expressing the Lbpro protein carried in pcDNA plasmid. Mutant FMDV cDNA, pAsia-ΔLbpro, was constructed by PCR mediated mutagenesis using inverse primers. Transfection of BHK-21 cells with in-vitro transcribed RNA from the constructs failed to produce an infective mutant FMDV. Genetic trans-complementation of the Lbpro, which was done by co-transfecting the pcDNALbpro plasmid DNA along with the pAsia-ΔLbpro RNA in BHK-21 cells also failed to produce viable virus. Expression experiments of reporter genes and indirect immune-fluorescence confirmed the production of the viral proteins in wild type FMDV pAsiaWT; however, it was absent in the pAsia-ΔLbpro indicating that the leaderless virus was unable to produce infectious progeny and infect the cells. Failure to produce virus either by Lbpro deleted mutant clone or by genetic complementation suggests little chance of reversion of the disabled virus with large deletions of FMDV genome.


Assuntos
Vírus da Febre Aftosa , Vírus da Febre Aftosa/genética , Animais , Linhagem Celular , Genoma Viral/genética , Replicação Viral , Febre Aftosa/virologia , Cricetinae , Plasmídeos/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Deleção de Genes , Endopeptidases
6.
Vet Microbiol ; 298: 110237, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39217891

RESUMO

Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV. Our findings revealed that two compounds specifically targeting fibroblast growth factor receptor 1 (FGFR1) and FMS-like tyrosine kinase 3 (FLT3) significantly disrupted FMDV entry. Furthermore, additional evaluation through gene knockdown and overexpression confirmed the promotion effect of FGFR1 and FLT3 on FMDV entry. Interestingly, we discovered that the increasement of FMDV entry facilitated by FGFR1 and FLT3 can be ascribed to increased macropinocytic uptake. Additionally, in-depth mechanistic study demonstrated that FGFR1 interacts with FMDV VP3 and undergoes phosphorylation during FMDV entry. Furthermore, the FGFR1 inhibitor inhibited FMDV-induced activation of p21-activated kinase 1 (PAK1) on Thr212 and Thr423 sites. Consistent with these findings, the ectopic expression of FGFR1 resulted in a concomitant increase in phosphorylation level of PAK1 on Thr212 and Thr423 sites. Taken together, our findings represent the initial exploration of FGFR1's involvement in FMDV macropinocytic entry, providing novel insights with potential implications for the development of antiviral strategies.

7.
J Virol ; 98(9): e0111424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194213

RESUMO

Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Animais , Suínos , Febre Aftosa/virologia , Febre Aftosa/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteases Virais 3C/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Células HEK293 , Proteólise , Fator 1 de Resposta a Butirato/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética
8.
J Vet Diagn Invest ; : 10406387241266900, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152699

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. FMD poses an economic threat to the livestock industry in the United States. Due to the potential use of vaccines composed of partially purified structural proteins of the FMD virus (FMDV), it is important to test samples from infected and vaccinated animals with a competitive ELISA that detects antibodies against nonstructural proteins (NSPs) of FMDV. Our study extends the diagnostic validation of the Prionics ELISA (Thermo Fisher) and the VMRD ELISA. We used diverse serum sample sets from bovine, porcine, and other cloven-hoofed animals to evaluate the analytical specificity and sensitivity, diagnostic specificity and sensitivity, and differentiation of infected from vaccinated animals (DIVA) per validation guidelines outlined by the World Organisation for Animal Health (WOAH). The 2 tests were analytically 100% accurate. The VMRD test was diagnostically more sensitive than Prionics, but Prionics was diagnostically more specific than the VMRD test. Both tests could tell if animals were infected or vaccinated. Considering these data, both VMRD and Prionics ELISAs can be used for serodetection of FMDV antibodies at the Foreign Animal Disease Diagnostic Laboratory and within the National Animal Health Laboratory Network laboratories.

9.
Front Vet Sci ; 11: 1299379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149149

RESUMO

Foot and mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. This disease is one of the most important in animal health due to its significant socio-economic impact, especially in case of an outbreak. One important challenge associated with this disease is the ability of the FMD virus (FMDV) to persist in its hosts through still unresolved underlying mechanisms. The absence of relevant in vitro models is one factor preventing advancement in our understanding of FMDV persistence. While a primary bovine cell model has been established using cells from FMDV primary and persistence site in cattle, it appeared interesting to develop a similar model based on ovine anatomical sites of interest to compare host-pathogen interactions. Thus, epithelial cells derived from the palatine tonsils and the dorsal soft palate were isolated and cultured. Their epithelial nature was confirmed using immunofluorescence. Following monolayer infection with FMDV O/FRA/1/2001 Clone 2.2, the FMDV-sensitivity of these cells was evaluated. Dorsal soft palate (DSP) cells were also expanded in multilayers at the air-liquid interface to mimic a stratified epithelium sensitive to FMDV infection. Our investigation revealed the presence of infectious virus, as well as viral antigens and viral RNA, up to 35 days after infection of the cell multilayers. Further experiment with DSP cells from different individuals needs to be reproduced to confirm the robustness of the new model of persistence in multilayer DSP. The establishment of such primary cells creates new opportunities for FMDV research and analysis in sheep cells.

10.
Int J Biol Macromol ; 277(Pt 4): 134366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098702

RESUMO

Intact capsids of foot-and-mouth disease virus (FMDV) play a vital role in eliciting a protective immune response. Any change in the physico-chemical environment of the capsids results in dissociation and poor immunogenicity. Structural bioinfomatics studies have been carried out to predict the amino acids at the interpentameric region that resulted in the identification of mutant virus-like particles(VLPs) of FMDV serotype Asia1/IND/63/1972. The insect cell expressed VLPs were evaluated for their stability by sandwich ELISA. Among 10 mutants, S93H showed maximum retention of antigenicity at different temperatures, indicating its higher thermal stability as revealed by the in-silico analysis and retained the antigenic sites of the virus demonstrated by Sandwich ELISA. The concordant results of the liquid phase blocking ELISA for estimation of antibody titre of known sera with stable mutant VLP as antigen in place of virus antigen demonstrate its diagnostic potential. The stable mutant VLP elicited a robust immune response with 85.6 % protection in guinea pigs against virus challenge. The stabilized VLP based antigen requires minimum biosafety and cold storage for production and transit besides, complying with differentiation of infected from vaccinated animals. It can effectively replace the conventional virus handling during antigen production for prophylactic and diagnostic use.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Sorogrupo , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/genética , Animais , Febre Aftosa/prevenção & controle , Febre Aftosa/diagnóstico , Febre Aftosa/imunologia , Cobaias , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Antígenos Virais/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Vacinas Virais/imunologia , Vacinas Virais/genética , Mutação
11.
Biologicals ; 87: 101785, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39121525

RESUMO

Diagnostic assays that are able to detect foot-and-mouth disease (FMD) virus infection in the vaccinated population are essential tools in the progressive control pathway for the FMD. However, testing of serum samples using a single diagnostic assay may not completely substantiate freedom from the virus infection. Therefore, viral non-structural proteins (NSPs)-based various serological assays have been developed for the detection of FMD infection. Nevertheless, the NSPs-based ELISAs have been developed in the indirect-ELISA format, thereby necessitating the use of species-specific conjugated secondary-antibodies for the detection of anti-NSP antibodies in various FMD-susceptible species. Therefore, this study presents a novel recombinant 2B-NSP-based indirect ELISA, employing HRP-conjugated protein-A/G detection system which can detect anti-NSPs antibodies from multiple FMD-susceptible species in a single ELISA platform. Recombinant 2B (r2B) protein was expressed as His-SUMO tagged protein in the E. Coli cells and purified using NI-NTA affinity column chromatography. Using the r2B protein and HRP-conjugated protein A/G, an indirect ELISA was developed and validated for the detection of anti-2B antibodies in serum samples collected from multiple FMD-susceptible animal species with known FMD status. Further, a resampling based statistical technique has been reported for determination of optimal cut-off value for the diagnostic assay. Through this technique, the optimal cut-off of 44 percentage of positivity value was determined for the assay. At this optimal cut-off value, the developed diagnostic assay provided diagnostic sensitivity, specificity, and accuracy, positive and negative predictive values (PPV and NPV) of 92.35 %, 98.41 %, 95.21 %, 98.58 %, and 91.67 %, respectively. The assay was validated further by analyzing random serum samples collected across multi-locations in India. The assay can be used as a single platform for testing serum samples from different species of FMDV-susceptible animals and will be useful for NSP-based serosurveillance of FMDV.


Assuntos
Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Aftosa , Febre Aftosa , Proteínas não Estruturais Virais , Vírus da Febre Aftosa/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Febre Aftosa/diagnóstico , Febre Aftosa/imunologia , Febre Aftosa/sangue , Febre Aftosa/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas não Estruturais Virais/imunologia , Bovinos , Proteínas Recombinantes/imunologia , Suínos , Especificidade da Espécie
12.
BMC Genomics ; 25(1): 796, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179961

RESUMO

The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Vírus da Febre Aftosa , Técnicas de Inativação de Genes , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Repetições WD40/genética , Sistemas CRISPR-Cas , Febre Aftosa/virologia
13.
Heliyon ; 10(15): e35449, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170175

RESUMO

Foot-and-mouth disease virus (FMDV) 2C protein is a conserved non-structural protein and crucial for replication of the virus. In this study, FMDV 2C protein was prepared and the enzymatic activities were investigated in detail. The protein could digest ssDNA or ssRNA into a small fragment at about 10 nt, indicating that the protein has nuclease activity. But it did not show digestion to blunt-end dsDNA or dsRNA. The nuclease activity of 2C protein could be inhibited in 2 mM Zn2+ or Ca2+ while enhanced by Mg2+ or Mn2+. FMDV 2C protein exhibited unwinding activity to all the three kinds of dsDNA and dsRNA (5' protruded, 3' protruded, and blunt-end). The unwinding velocity to 5' protruded dsRNA was higher than to the blunt-end dsRNA. 2C protein only showed unwinding activity in high concentration of Mg2+, but no unwinding activity in physiological concentrations of Mg2+ and Ca2+, as well as in cell lysate. The 2C protein could catalyze two structured ssRNA to form double strand, thus it was proved to have RNA chaperone activity. The Mg2+ and ATP in different concentrations did not show promotion to the RNA chaperone activity. Finally, six mutant proteins (K116A, D160A, D170A, N207A, R226A, and F316A) were constructed and the enzymatic activities were analyzed. All the six mutations reduced the ATPase activity, D170A and F361A could inactivate the nuclease activity, while the N207A and F316A could inactivate the helicase activity. Our study provides a comprehensive understanding of the enzymatic activities of FMDV 2C protein.

14.
Viruses ; 16(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066165

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that affects cloven-hoofed animals and causes severe economic losses in the livestock industry. Given that this high-risk pathogen has to be handled in a biosafety level (BSL)-3 facility for safety reasons and the limited availability of BSL-3 laboratories, experiments on FMDV call for more attention. Therefore, we aimed to develop an FMDV experimental model that can be handled in BSL-2 laboratories. The NanoBiT luciferase (Nano-luc) assay is a well-known assay for studying protein-protein interactions. To apply the NanoBiT split luciferase assay to the diagnosis and evaluation of FMD, we developed an inactivated HiBiT-tagged Asia1 Shamir FMDV (AS-HiBiT), a recombinant Asia1 shamir FMDV with HiBiT attached to the VP1 region of Asia1 shamir FMDV. In addition, we established LgBiT-expressing LF-BK cell lines, termed LgBit-LF-BK cells. It was confirmed that inactivated AS-HiBiT infected LgBiT-LF-BK cells and produced a luminescence signal by binding to the intracellular LgBiT of LgBiT-LF-BK cells. In addition, the luminescence signal became stronger as the number of LgBiT-LF-BK cells increased or the concentration of inactivated AS-HiBiT increased. Moreover, we confirmed that inactivated AS-HiBiT can detect seroconversion in sera positive for FMDV-neutralizing antibodies. This NanoBiT split luciferase assay system can be used for the diagnosis and evaluation of FMD and expanded to FMD-like virus models to facilitate the evaluation of FMDV vaccines and antibodies.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Febre Aftosa/diagnóstico , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Luciferases/genética , Luciferases/metabolismo
15.
Mol Ther Nucleic Acids ; 35(3): 102235, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39021763

RESUMO

The intrinsic nature of CRISPR-Cas in conferring immunity to bacteria and archaea has been repurposed to combat pathogenic agents in mammalian and plant cells. In this regard, CRISPR-Cas13 systems have proved their remarkable potential for single-strand RNA viruses targeting. Here, different types of Cas13 orthologs were applied to knockdown foot-and-mouth disease virus (FMDV), a highly contagious disease of a wide variety of species with genetically diverse strains and is widely geographically distributed. Using programmable CRISPR RNAs capable of targeting conserved regions of the viral genome, all Cas13s from CRISPR system type VI (subtype A/B/D) could comprehensively target and repress different serotypes of FMDV virus. This approach has the potential to destroy all strains of a virus as targets the ultra-conserved regions of genome. We experimentally compared the silencing efficiency of CRISPR and RNAi by designing the most effective short hairpin RNAs according to our developed scoring system and observed comparable results. This study showed successful usage of various Cas13 enzymes for suppression of FMDV, which provides a flexible strategy to battle with other animal infectious RNA viruses, an underdeveloped field in the biotechnology scope.

16.
Bio Protoc ; 14(12): e5017, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948261

RESUMO

Foot-and-mouth disease (FMD) is a severe and extremely contagious viral disease of cloven-hoofed domestic and wild animals, which leads to serious economic losses to the livestock industry globally. FMD is caused by the FMD virus (FMDV), a positive-strand RNA virus that belongs to the genus Aphthovirus, within the family Picornaviridae. Early detection and characterization of FMDV strains are key factors to control new outbreaks and prevent the spread of the disease. Here, we describe a direct RNA sequencing method using Oxford Nanopore Technology (ONT) Flongle flow cells on MinION Mk1C (or GridION) to characterize FMDV. This is a rapid, low cost, and easily deployed point of care (POC) method for a near real-time characterization of FMDV in endemic areas or outbreak investigation sites. Key features • Saves ~35 min of the original protocol time by omitting the reverse transcription step and lowers the costs of reagents and consumables. • Replaces the GridION flow cell from the original protocol with the Flongle, which saves ~90% on the flow cell cost. • Combines the NGS benchwork with a modified version of our African swine fever virus (ASFV) fast analysis pipeline to achieve FMDV characterization within minutes. Graphical overview Schematic of direct RNA sequencing of foot-and-mouth disease virus (FMDV) process, which takes ~50 min from extracted RNA to final loading, modified from the ONT SQK-RNA002 protocol (Version: DRS_9080_v2_revO_14Aug2019).

17.
Viruses ; 16(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39066290

RESUMO

Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for secondary metabolite terpenoids targeting the RNA-dependent RNA polymerase (RdRp), or 3Dpol, of FMDV. Subsequently, we identified the potential antiviral activity of the 32 top-ranked terpenoids, revealing that continentalic acid, dehydroabietic acid (abietic diterpenoids), brusatol, bruceine D, and bruceine E (tetracyclic triterpenoids) significantly reduced cytopathic effects and viral infection in the terpenoid-treated, FMDV-infected BHK-21 cells in a dose-dependent manner, with nanomolar to low micromolar levels. The FMDV minigenome assay demonstrated that brusatol and bruceine D, in particular, effectively blocked FMDV 3Dpol activity, exhibiting IC50 values in the range of 0.37-0.39 µM and surpassing the efficacy of the antiviral drug control, ribavirin. Continentalic acid and bruceine E exhibited moderate inhibition of FMDV 3Dpol. The predicted protein-ligand interaction confirmed that these potential terpenoids interacted with the main catalytic and bystander residues of FMDV 3Dpol. Additionally, brusatol and bruceine D exhibited additive effects when combined with ribavirin. In conclusion, terpenoids from natural resources show promise for the development of anti-FMD agents.


Assuntos
Antivirais , Vírus da Febre Aftosa , Terpenos , Vírus da Febre Aftosa/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Animais , Terpenos/farmacologia , Terpenos/química , Linhagem Celular , Replicação Viral/efeitos dos fármacos , Simulação por Computador , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Cricetinae , Simulação de Acoplamento Molecular , Febre Aftosa/virologia , Febre Aftosa/tratamento farmacológico , Diterpenos/farmacologia , Diterpenos/química
18.
FASEB J ; 38(14): e23822, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072864

RESUMO

Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.


Assuntos
Vírus da Febre Aftosa , Conformação de Ácido Nucleico , RNA Viral , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Replicação Viral/genética , RNA Viral/genética , RNA Viral/metabolismo , Animais , Regiões 5' não Traduzidas , Febre Aftosa/virologia , Genoma Viral , Linhagem Celular , Cricetinae
19.
BMC Vet Res ; 20(1): 301, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971791

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is a devastating disease affecting cloven-hoofed animals, that leads to significant economic losses in affected countries and regions. Currently, there is an evident inclination towards the utilization of nanoparticles as powerful platforms for innovative vaccine development. Therefore, this study developed a ferritin-based nanoparticle (FNP) vaccine that displays a neutralizing epitope of foot-and-mouth disease virus (FMDV) VP1 (aa 140-158) on the surface of FNP, and evaluated the immunogenicity and protective efficacy of these FNPs in mouse and guinea pig models to provide a strategy for developing potential FMD vaccines. RESULTS: This study expressed the recombinant proteins Hpf, HPF-NE and HPF-T34E via an E. coli expression system. The results showed that the recombinant proteins Hpf, Hpf-NE and Hpf-T34E could be effectively assembled into nanoparticles. Subsequently, we evaluated the immunogenicity of the Hpf, Hpf-NE and Hpf-T34E proteins in mice, as well as the immunogenicity and protectiveness of the Hpf-T34E protein in guinea pigs. The results of the mouse experiment showed that the immune efficacy in the Hpf-T34E group was greater than the Hpf-NE group. The results from guinea pigs immunized with Hpf-T34E showed that the immune efficacy was largely consistent with the immunogenicity of the FMD inactivated vaccine (IV) and could confer partial protection against FMDV challenge in guinea pigs. CONCLUSIONS: The Hpf-T34E nanoparticles stand out as a superior choice for a subunit vaccine candidate against FMD, offering effective protection in FMDV-infected model animals. FNP-based vaccines exhibit excellent safety and immunogenicity, thus representing a promising strategy for the continued development of highly efficient and safe FMD vaccines.


Assuntos
Epitopos , Ferritinas , Vírus da Febre Aftosa , Febre Aftosa , Nanopartículas , Vacinas Virais , Animais , Cobaias , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Ferritinas/imunologia , Vacinas Virais/imunologia , Epitopos/imunologia , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteínas do Capsídeo
20.
Am Nat ; 204(2): 133-146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008835

RESUMO

AbstractInfectious disease dynamics operate across biological scales: pathogens replicate within hosts but transmit among populations. Functional changes in the pathogen-host interaction thus generate cascading effects across organizational scales. We investigated within-host dynamics and among-host transmission of three strains (SAT-1, -2, -3) of foot-and-mouth disease viruses (FMDVs) in their wildlife host, African buffalo. We combined data on viral dynamics and host immune responses with mathematical models to ask the following questions: How do viral and immune dynamics vary among strains? Which viral and immune parameters determine viral fitness within hosts? And how do within-host dynamics relate to virus transmission? Our data reveal contrasting within-host dynamics among viral strains, with SAT-2 eliciting more rapid and effective immune responses than SAT-1 and SAT-3. Within-host viral fitness was overwhelmingly determined by variation among hosts in immune response activation rates but not by variation among individual hosts in viral growth rate. Our analyses investigating across-scale linkages indicate that viral replication rate in the host correlates with transmission rates among buffalo and that adaptive immune activation rate determines the infectious period. These parameters define the virus's relative basic reproductive number (ℛ0), suggesting that viral invasion potential may be predictable from within-host dynamics.


Assuntos
Búfalos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Búfalos/virologia , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/crescimento & desenvolvimento , Febre Aftosa/transmissão , Febre Aftosa/virologia , Febre Aftosa/imunologia , Interações Hospedeiro-Patógeno/imunologia , Replicação Viral , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA