Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.161
Filtrar
1.
Front Nutr ; 11: 1446854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360283

RESUMO

The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.

2.
Curr Biol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39366378

RESUMO

Understanding and remembering the complex experiences of everyday life relies critically on prior schematic knowledge about how events in our world unfold over time. How does the brain construct event representations from a library of schematic scripts, and how does activating a specific script impact the way that events are segmented in time? We developed a novel set of 16 audio narratives, each of which combines one of four location-relevant event scripts (restaurant, airport, grocery store, and lecture hall) with one of four socially relevant event scripts (breakup, proposal, business deal, and meet cute), and presented them to participants in an fMRI study and a separate online study. Responses in the angular gyrus, parahippocampal gyrus, and subregions of the medial prefrontal cortex (mPFC) were driven by scripts related to both location and social information, showing that these regions can track schematic sequences from multiple domains. For some stories, participants were primed to attend to one of the two scripts by training them to listen for and remember specific script-relevant episodic details. Activating a location-related event script shifted the timing of subjective event boundaries to align with script-relevant changes in the narratives, and this behavioral shift was mirrored in the timing of neural responses, with mPFC event boundaries (identified using a hidden Markov model) aligning to location-relevant rather than socially relevant boundaries when participants were location primed. Our findings demonstrate that neural event dynamics are actively modulated by top-down goals and provide new insight into how narrative event representations are constructed through the activation of temporally structured prior knowledge.

3.
Dev Cogn Neurosci ; 70: 101453, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39368283

RESUMO

Previous research suggests that episodic memory relies on functional neural networks,which are present even in the absence of an explicit task. The regions that integrate.these networks and the developmental changes in intrinsic functional connectivity.remain elusive. In the present study, we outlined an intrinsic episodic memory network.(iEMN) based on a systematic selection of functional connectivity studies, and.inspected network differences in resting-state fMRI between adolescents (13-17 years.old) and adults (23-27 years old) from the publicly available NKI-Rockland Sample.Through a review of brain regions commonly associated with episodic memory.networks, we identified a potential iEMN composed by 14 bilateral ROIs, distributed.across temporal, frontal and parietal lobes. Within this network, we found an increase.in resting-state connectivity from adolescents to adults between the right temporal pole.and two regions in the right lateral prefrontal cortex. We argue that the coordination of.these brain regions, connecting areas of semantic processing and areas of controlled.retrieval, arises as an important feature towards the full maturation of the episodic.memory system. The findings add to evidence suggesting that adolescence is a key.period in memory development and highlights the role of intrinsic functional.connectivity in such development.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39368629

RESUMO

OBJECTIVE: Nearly 65% of youth experience trauma, and up to one-third of youth with trauma exposure face profound mental health sequelae. There remains a need to elucidate factors that contribute to psychopathology following trauma exposure and optimize interventions for youth who do not benefit sufficiently from existing treatments. Here, we probe safety signal learning (SSL), which is a mechanism of fear reduction that leverages learned safety to inhibit fear in the presence of threat-associated stimuli and has been shown to attenuate fear via a hippocampal-cingulate--specifically, dorsal anterior cingulate cortex (dACC)--pathway. METHOD: The present study used behavioral and task-based functional magnetic resonance imaging data to examine age-related associations between interpersonal trauma exposure and the behavioral and neural correlates (i.e., activation and functional connectivity) of SSL in a group of 102 youth (ages 9-19; 46 female, 56 male) with (n=52) and without (n=50) interpersonal trauma exposure. Primary analyses examined anterior hippocampal activation and anterior hippocampus-dACC functional connectivity. Exploratory analyses examined centromedial (CMA) and laterobasal (LBA) amygdala activation and anterior hippocampal, CMA, and LBA functional connectivity with additional anterior cingulate subregions (i.e., subgenual anterior cingulate cortex [sgACC] and rostral anterior cingulate cortex [rosACC]). RESULTS: Both youth with and without interpersonal trauma exposure successfully learned conditioned safety, which was determined using self-report of contingency awareness. Youth with interpersonal trauma exposure-relative to youth in the comparison group-exhibited age-specific patterns of lower hippocampal activation (F(2,96)=3.75, pFDR=.049, ηp2=.072), and, in exploratory analyses, showed heightened centromedial amygdala activation (F(1,96)=5.37, pFDR=.046, ηp2=.053) and an age-related decrease in hippocampal-sgACC functional connectivity during SSL (F(1,94)=10.68, pFDR=.015, ηp2=.102). We also show that hippocampal-sgACC functional connectivity mediated the association between interpersonal trauma exposure and PTSD symptoms in an age-specific manner in the overall sample. CONCLUSION: Together, these findings suggest that although age- and trauma-specific differences in the neural correlates of SSL may relate to the development of psychopathology, youth with interpersonal trauma exposure demonstrate successful learning of conditioned safety over time.

5.
Psychophysiology ; : e14703, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367529

RESUMO

The left ventral occipitotemporal cortex (lvOT) has been consistently identified as a crucial structure in word reading, and its function varies across subregions. Nevertheless, the specific function of the lvOT and its subregions remains controversial because the obvious grapheme-to-phoneme correspondence rules of alphabetic languages make it difficult to disentangle the contributions of orthography and phonology to neural activations. To explore information processing in lvOT subregions, the present study manipulated the orthography and phonology in a factorial design and used the fMRI rapid adaptation paradigm. The results revealed a posterior-to-anterior functional gradient in lvOT in Chinese word reading and specified that the functional transition from sublexical to lexical processing occurred in the middle subregion close to the classic VWFA. More importantly, we found that the middle and posterior subregions of lvOT are responsible for processing both orthographic and phonological information during Chinese word reading. These results elaborated the function of the lvOT in Chinese word reading.

6.
Nutr Res ; 131: 147-158, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39395250

RESUMO

Maternal nutrition during the perinatal stage is critical to offspring brain development. Egg yolks are a balanced and nutrient-dense food that is rich in bioactive components crucial to optimal neurodevelopment early in life. Egg consumption is often recommended to pregnant women to enhance both maternal and fetal health. We hypothesized that maternal intake of egg yolk from late gestation and throughout lactation would enhance functional organization and cognitive developmental outcomes in offspring using a pig model. Sows were fed a control diet (n = 6) or a diet containing egg yolks (n = 5, 350 mg egg yolk powder/kg BW/day, equivalent to ∼3 eggs/day for humans) from late gestation through lactation. At weaning, piglet offspring (n = 2/sow, total n = 22) underwent structural magnetic resonance imaging (MRI) and resting-state-functional MRI. Piglets underwent novel object recognition testing to assess hippocampal-dependent learning and memory. Functional MRI results demonstrated that egg yolk significantly increased functional activation in the executive network (p = 0.0343) and cerebellar network (p = 0.0253) in piglets when compared to control. Diffusion tensor imaging analysis showed that perinatal intake of egg yolks significantly increased white matter fiber length in the hippocampus (p = 0.0363) and cerebellum (p = 0.0287) in piglet offspring compared to control piglets. Furthermore, piglets from egg yolk-fed sows spent significantly more proportional frequency exploring the novel object than the familiar object in novel object recognition testing (p = 0.0370). The findings from this study support egg yolk-altered activation of specific brain networks may be associated with functional cognitive outcomes in weaning piglets.

7.
Front Nutr ; 11: 1387514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39385774

RESUMO

Objective: To test associations of candidate obesity-related single nucleotide polymorphisms (SNPs) and obesity polygenic risk scores (PRS) with neural reward reactivity to food cues. Methods: After consuming a pre-load meal, 9-12-year-old children completed a functional magnetic resonance imaging (fMRI) paradigm with exposure to food and non-food commercials. Genetic exposures included FTO rs9939609, MC4R rs571312, and a pediatric-specific obesity PRS. A targeted region-of-interest (ROI) analysis for 7 bilateral reward regions and a whole-brain analysis were conducted. Independent associations between each genetic factor and reward responsivity to food cues in each ROI were evaluated using linear models. Results: Analyses included 151 children (M = 10.9 years). Each FTO rs9939609 obesity risk allele was related to a higher food-cue-related response in the right lateral hypothalamus after controlling for covariates including the current BMI Z-score (p < 0.01), however, the association did not remain significant after applying the multiple testing correction. MC4R rs571312 and the PRS were not related to heightened food-cue-related reward responsivity in any examined regions. The whole-brain analysis did not identify additional regions of food-cue-related response related to the examined genetic factors. Conclusion: Children genetically at risk for obesity, as indicated by the FTO genotype, may be predisposed to higher food-cue-related reward responsivity in the lateral hypothalamus in the sated state, which, in turn, could contribute to overconsumption. Clinical trial registration: https://clinicaltrials.gov/study/NCT03766191, identifier NCT03766191.

8.
Neurosci Insights ; 19: 26331055241286518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386147

RESUMO

Psychedelic therapies are an emerging class of treatments in psychiatry with great potential, however relatively little is known about their interactions with other commonly used psychiatric medications. As psychedelic therapies become more widespread and move closer to the clinic, they likely will need to be integrated into existing treatment models which may include one or more traditional pharmacological therapies, meaning an awareness of potential drug-drug interactions will become vital. This commentary outlines some of the issues surrounding the study of drug-drug interactions of this type, provides a summary of some of the relevant key results to date, and charts a way forward which relies crucially on multimodal neuroimaging investigations. Studies in humans which combine Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI), plus ancillary measures, are likely to provide the most comprehensive assessment of drug-drug interactions involving psychedelics and the relevant effects at multiple levels of the drug response (molecular, functional, and clinical).

9.
Brain Lang ; 258: 105485, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388908

RESUMO

Previous studies suggest that semantic concepts are characterized by high-dimensional neural representations and that language proficiency affects semantic processing. However, it is not clear whether language proficiency modulates the dimensional representations of semantic concepts at the neural level. To address this question, the present study adopted principal component analysis (PCA) and representational similarity analysis (RSA) to examine the differences in representational dimensionalities (RDs) and in semantic representations between words in highly proficient (Chinese) and less proficient (English) language. PCA results revealed that language proficiency increased the dimensions of lexical representations in the left inferior frontal gyrus, temporal pole, inferior temporal gyrus, supramarginal gyrus, angular gyrus, and fusiform gyrus. RSA results further showed that these regions represented semantic information and that higher semantic representations were observed in highly proficient language relative to less proficient language. These results suggest that language proficiency is associated with the neural representational dimensionality of semantic concepts.

10.
BMC Psychiatry ; 24(1): 671, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390430

RESUMO

BACKGROUND: Individuals using methamphetamine (METH) may experience psychosis, which usually requires aggressive treatment. Studies of the neural correlates of METH-associated psychosis (MAP) have focused predominantly on the default mode network (DMN) and cognitive control networks. We hypothesize that METH use alters global functional connections in resting-state brain networks and that certain cross-network connections could be associated with psychosis. METHODS: We recruited 24 healthy controls (CRL) and 54 men with METH use disorder (MUD) who were then divided into 25 without psychosis (MNP) and 29 with MAP. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS), evaluating (1) large-scale alterations in regional-wise resting-state functional connectivity (rsFC) across 11 brain networks and (2) associations between rsFC and psychotic symptom severity. RESULTS: The MUD group exhibited greater rsFC between the salience network (SN)-DMN, and subcortical network (SCN)-DMN compared to the CRL group. The MAP group exhibited decreased rsFC in the sensory/somatomotor network (SMN)-dorsal attention network (DAN), SMN-ventral attention network (VAN), SMN-SN, and SMN-auditory network (AN), whereas the MNP group exhibited increased rsFC in the SMN-DMN and the frontoparietal network (FPN)-DMN compared to CRL. Additionally, the MAP group exhibited decreased rsFC strength between the SMN-DMN, SMN-AN, SMN-FPN, and DMN-VAN compared to the MNP group. Furthermore, across the entire MUD group, the PANSS-Positive subscale was negatively correlated with the DMN-FPN and FPN-SMN, while the PANSS-Negative subscale was negatively correlated with the DMN-AN and SMN-SMN. CONCLUSION: MUD is associated with altered global functional connectivity. In addition, the MAP group exhibits a different brain functional network compared to the MNP group.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Imageamento por Ressonância Magnética , Metanfetamina , Rede Nervosa , Psicoses Induzidas por Substâncias , Humanos , Masculino , Metanfetamina/efeitos adversos , Adulto , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Transtornos Relacionados ao Uso de Anfetaminas/complicações , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico por imagem , Psicoses Induzidas por Substâncias/fisiopatologia , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Adulto Jovem , Estudos de Casos e Controles , Índice de Gravidade de Doença , Transtornos Psicóticos/fisiopatologia , Conectoma , Estimulantes do Sistema Nervoso Central/efeitos adversos , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/efeitos dos fármacos
11.
Cereb Cortex ; 34(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39390710

RESUMO

Humans perceive a pulse, or beat, underlying musical rhythm. Beat strength correlates with activity in the basal ganglia and supplementary motor area, suggesting these regions support beat perception. However, the basal ganglia and supplementary motor area are part of a general rhythm and timing network (regardless of the beat) and may also represent basic rhythmic features (e.g. tempo, number of onsets). To characterize the encoding of beat-related and other basic rhythmic features, we used representational similarity analysis. During functional magnetic resonance imaging, participants heard 12 rhythms-4 strong-beat, 4 weak-beat, and 4 nonbeat. Multi-voxel activity patterns for each rhythm were tested to determine which brain areas were beat-sensitive: those in which activity patterns showed greater dissimilarities between rhythms of different beat strength than between rhythms of similar beat strength. Indeed, putamen and supplementary motor area activity patterns were significantly dissimilar for strong-beat and nonbeat conditions. Next, we tested whether basic rhythmic features or models of beat strength (counterevidence scores) predicted activity patterns. We found again that activity pattern dissimilarity in supplementary motor area and putamen correlated with beat strength models, not basic features. Beat strength models also correlated with activity pattern dissimilarities in the inferior frontal gyrus and inferior parietal lobe, though these regions encoded beat and rhythm simultaneously and were not driven by beat alone.


Assuntos
Percepção Auditiva , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Córtex Motor , Música , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Percepção Auditiva/fisiologia , Periodicidade , Estimulação Acústica/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
12.
Chem Senses ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387136

RESUMO

The olfactory nerve, also known as cranial nerve I, is known to have exclusive ipsilateral projections to primary olfactory cortical structures. However, the lateralization of olfactory processes is known to depend on the task and nature of stimuli. It still remains unclear whether olfactory system projections in humans also correspond to functional pathways during olfactory tasks without any trigeminal, perceptual or cognitive-motor components. Twenty young healthy subjects with a normal sense of smell took part in an olfactory functional magnetic resonance imaging (fMRI) study. We used two types of nostril specific stimulation, passive (no sniffing) and active (with sniffing), with phenyl ethyl alcohol, a pure olfactory stimulant, to investigate fMRI activity patterns in primary and secondary olfactory-related brain structures. Irrespective of the stimulated nostril and the type of stimulation, we detected symmetrical activity in primary and secondary olfactory-related brain structures such as the primary olfactory cortex, entorhinal cortex, and orbitofrontal cortex. In the absence of perceptual or cognitive-motor task demands, the perception of monorhinally presented pure odors is processed bilaterally in the brain.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39379769

RESUMO

Previous behavioral research has found that working memory is associated with emotion regulation efficacy. However, there has been mixed evidence as to whether the neural mechanisms between emotion regulation and working memory overlap. The present study tested the prediction that individual differences on the working memory subtest of the Weschler Adult Intelligence Scale (WAIS-IV) could be predicted from the pattern of brain activity produced during emotion regulation in regions typically associated with working memory, such as the dorsal lateral prefrontal cortex (dlPFC). A total of 101 participants completed an emotion regulation fMRI task in which they either viewed or reappraised negative images. Participants also completed working memory test outside the scanner. A whole brain covariate analysis contrasting the reappraise negative and view negative BOLD response found that activity in the right dlPFC positively related to working memory ability. Moreover, a multivoxel pattern analysis approach using tenfold cross-validated support vector regression in regions-of-interest associated with working memory, including bilateral dlPFC, demonstrated that we could predict individual differences in working memory ability from the pattern of activity associated with emotion regulation. These findings support the idea that emotion regulation shares underlying cognitive processes and neural mechanisms with working memory, particularly in the dlPFC.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39379768

RESUMO

Recent studies have shown that spontaneous pre-stimulus fluctuations in brain activity affect higher-order cognitive processes, including risky decision-making, cognitive flexibility, and aesthetic judgments. However, there is currently no direct evidence to suggest that pre-choice activity influences value-based decisions that require self-control. We examined the impact of fluctuations in pre-choice activity in key regions of the reward system on self-control in food choice. In the functional magnetic resonance imaging (fMRI) scanner, 49 participants made 120 food choices that required self-control in high and low working memory load conditions. The task was designed to ensure that participants were cognitively engaged and not thinking about upcoming choices. We defined self-control success as choosing a food item that was healthier over one that was tastier. The brain regions of interest (ROIs) were the ventral tegmental area (VTA), putamen, nucleus accumbens (NAc), and caudate nucleus. For each participant and condition, we calculated the mean activity in the 3-s interval preceding the presentation of food stimuli in successful and failed self-control trials. These activities were then used as predictors of self-control success in a fixed-effects logistic regression model. The results indicate that increased pre-choice VTA activity was linked to a higher probability of self-control success in a subsequent food-choice task within the low-load condition, but not in the high-load condition. We posit that pre-choice fluctuations in VTA activity change the reference point for immediate (taste) reward evaluation, which may explain our finding. This suggests that the neural context of decisions may be a key factor influencing human behavior.

15.
Front Neurol ; 15: 1439939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381074

RESUMO

Background: Resting-state functional magnetic resonance imaging (rs-fMRI) reveals diverse neural activity patterns in cervical spondylosis (CS) patients. However, the reported results are inconsistent. Therefore, our objective was to conduct a meta-analysis to synthesize the findings from existing rs-fMRI studies and identify consistent patterns of neural brain activity alterations in patients with CS. Materials and methods: A systematic search was conducted across PubMed, Web of Knowledge, Embase, Google Scholar, and CNKI for rs-fMRI studies that compared CS patients with healthy controls (HCs), up to January 28, 2024. Significant cluster coordinates were extracted for comprehensive analysis. Results: We included 16 studies involving 554 CS patients and 488 HCs. CS patients demonstrated decreased brain function in the right superior temporal gyrus and left postcentral gyrus, and increased function in the left superior frontal gyrus. Jackknife sensitivity analysis validated the robustness of these findings, and Egger's test confirmed the absence of significant publication bias (p > 0.05). Meta-regression showed no significant impact of age or disease duration differences on the results. Conclusion: This meta-analysis confirms consistent alterations in specific brain regions in CS patients, highlighting the potential of rs-fMRI to refine diagnostic and therapeutic strategies. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024496263.

16.
Front Hum Neurosci ; 18: 1461590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381142

RESUMO

Parcellations of resting-state functional magnetic resonance imaging (rs-fMRI) data are widely used to create topographical maps of functional networks in the human brain. While such network maps are highly useful for studying brain organization and function, they usually require large sample sizes to make them, thus creating practical limitations for researchers that would like to carry out parcellations on data collected in their labs. Furthermore, it can be difficult to quantitatively evaluate the results of a parcellation since networks are usually identified using a clustering algorithm, like principal components analysis, on the results of a single group-averaged connectivity map. To address these challenges, we developed the FunMaps method: a parcellation routine that intrinsically incorporates stability and replicability of the parcellation by keeping only network distinctions that agree across halves of the data over multiple random iterations. Here, we demonstrate the efficacy and flexibility of FunMaps, while describing step-by-step instructions for running the program. The FunMaps method is publicly available on GitHub (https://github.com/persichetti-lab/FunMaps). It includes source code for running the parcellation and auxiliary code for preparing data, evaluating the parcellation, and displaying the results.

17.
Brain Cogn ; 181: 106223, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383675

RESUMO

INTRODUCTION: This study aims to explore the impact of smoking on intrinsic brain activity among high-altitude (HA) populations. Smoking is associated with various neural alterations, but it remains unclear whether smokers in HA environments exhibit specific neural characteristics. METHODS: We employed ALFF and fALFF methods across different frequency bands to investigate differences in brain functional activity between high-altitude smokers and non-smokers. 31 smokers and 31 non-smokers from HA regions participated, undergoing resting-state functional magnetic resonance imaging (rs-fMRI) scans. ALFF/fALFF values were compared between the two groups. Correlation analyses explored relationships between brain activity and clinical data. RESULTS: Smokers showed increased ALFF values in the right superior frontal gyrus (R-SFG), right middle frontal gyrus (R-MFG), right anterior cingulate cortex (R-ACC), right inferior frontal gyrus (R-IFG), right superior/medial frontal gyrus (R-MSFG), and left SFG compared to non-smokers in HA. In sub-frequency bands (0.01-0.027 Hz and 0.027-0.073 Hz), smokers showed increased ALFF values in R-SFG, R-MFG, right middle cingulate cortex (R-MCC), R-MSFG, Right precentral gyrus and L-SFG while decreased fALFF values were noted in the right postcentral and precentral gyrus in the 0.01-0.027 Hz band. Negative correlations were found between ALFF values in the R-SFG and smoking years. CONCLUSION: Our study reveals the neural characteristics of smokers in high-altitude environments, highlighting the potential impact of smoking on brain function. These results provide new insights into the neural mechanisms of high-altitude smoking addiction and may inform the development of relevant intervention measures.

18.
Neuroimage ; 300: 120877, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39353538

RESUMO

Pain is a highly subjective and multidimensional experience, significantly influenced by various psychological factors. Placebo analgesia and nocebo hyperalgesia exemplify this influence, where inert treatments result in pain relief or exacerbation, respectively. While extensive research has elucidated the psychological and neural mechanisms behind these effects, most studies have focused on transient pain stimuli. To explore these mechanisms in the context of tonic pain, we conducted a study using a 15-minute tonic muscle pain induction procedure, where hypertonic saline was infused into the left masseter of healthy participants. We collected real-time Visual Analogue Scale (VAS) scores and functional magnetic resonance imaging (fMRI) data during the induction of placebo analgesia and nocebo hyperalgesia via conditioned learning. Our findings revealed that placebo analgesia was more pronounced and lasted longer than nocebo hyperalgesia. Real-time pain ratings correlated significantly with neural activity in several brain regions. Notably, the putamen was implicated in both effects, while the caudate and other regions were differentially involved in placebo and nocebo effects. These findings confirm that the tonic muscle pain paradigm can be used to investigate the mechanisms of placebo and nocebo effects and indicate that placebo analgesia and nocebo hyperalgesia may have more distinct than common neural bases.


Assuntos
Hiperalgesia , Imageamento por Ressonância Magnética , Mialgia , Efeito Nocebo , Efeito Placebo , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Mialgia/fisiopatologia , Mialgia/psicologia , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Medição da Dor , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/fisiologia
19.
Neuroimage ; 301: 120884, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378912

RESUMO

Resting-state of the human brain has been described by a combination of various basis modes including the default mode network (DMN) identified by fMRI BOLD signals in human brains. Whether DMN is the most dominant representation of the resting-state has been under question. Here, we investigated the unexplored yet fundamental nature of the resting-state. In the absence of global signal regression for the analysis of brain-wide spatial activity pattern, the fMRI BOLD spatiotemporal signals during the rest were completely decomposed into time-invariant spatial-expression basis modes (SEBMs) and their time-evolution basis modes (TEBMs). Contrary to our conventional concept above, similarity clustering analysis of the SEBMs from 166 human brains revealed that the most dominant SEBM cluster is an asymmetric mode where the distribution of the sign of the components is skewed in one direction, for which we call essential mode (EM), whereas the second dominant SEBM cluster resembles the spatial pattern of DMN. Having removed the strong 1/f noise in the power spectrum of TEBMs, the genuine oscillatory behavior embedded in TEBMs of EM and DMN-like mode was uncovered around the low-frequency range below 0.2 Hz.

20.
Psychol Med ; : 1-12, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39397677

RESUMO

BACKGROUND: Studies suggest severe mental disorders (SMDs), such as schizophrenia, major depressive disorder and bipolar disorder, are associated with common alterations in brain activity, albeit with a graded level of impairment. However, discrepancies between study findings likely to results from both small sample sizes and the use of different functional magnetic resonance imaging (fMRI) tasks. To address these issues, data-driven meta-analytic approach designed to identify homogeneous brain co-activity patterns across tasks was conducted to better characterize the common and distinct alterations between these disorders. METHODS: A hierarchical clustering analysis was conducted to identify groups of studies reporting similar neuroimaging results, independent of task type and psychiatric diagnosis. A traditional meta-analysis (activation likelihood estimation) was then performed within each of these groups of studies to extract their aberrant activation maps. RESULTS: A total of 762 fMRI study contrasts were targeted, comprising 13 991 patients with SMDs. Hierarchical clustering analysis identified 5 groups of studies (meta-analytic groupings; MAGs) being characterized by distinct aberrant activation patterns across SMDs: (1) emotion processing; (2) cognitive processing; (3) motor processes, (4) reward processing, and (5) visual processing. While MAG1 was mostly commonly impaired, MAG2 was more impaired in schizophrenia, while MAG3 and MAG5 revealed no differences between disorder. MAG4 showed the strongest between-diagnoses differences, particularly in the striatum, posterior cingulate cortex, and ventromedial prefrontal cortex. CONCLUSIONS: SMDs are characterized mostly by common deficits in brain networks, although differences between disorders are also present. This study highlights the importance of studying SMDs simultaneously rather than independently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA