RESUMO
Keratinocyte stress-response of the uninvolved psoriatic epidermis is known to be altered compared to healthy cells. Therefore, we aimed to reveal potential mechanisms underlying this alteration. We compared the expression of annotated cell-stress-related proteins between uninvolved psoriatic and healthy skin using the protein array method. Data were analyzed by the Reactome over-representation test. We found that p27/CDKN1B and cytochrome C showed at least a two-fold increase, while cyclooxygenase-2, indolamine-2,3-dioxygenase-1, serum paraoxonase 1, serum paraoxonase 3, serine-46-phosphorylated tumor protein p53, and superoxide-dismutase-2 showed a two-fold decrease in expression in the uninvolved skin. Over-representation analysis suggested the Forkhead-box protein O (FOXO)-mediated transcription as the most significant pathway affected by the differently expressed cell-stress-related proteins (DECSRPs). DECSRPs indicate increased FOXO-mediated transcription of cell-cycle genes and reduced interleukin-signaling in the psoriatic uninvolved skin. Nuclear positivity of the FOXO-signaling-related p27/CDKN1B and FOXO1 are negatively correlated with the disease severity and showed increased expression in the uninvolved epidermis and also in healthy primary keratinocytes, which were grown on cartilage oligomeric matrix protein-coated surfaces. Our results indicate a cell-cycle inhibitory process, as a stress-related compensatory mechanism in the uninvolved epidermis, that could be responsible for blocking keratinocyte hyperproliferation in the psoriatic uninvolved skin, thus maintaining the symptomless skin phenotype.