Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1355872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533334

RESUMO

Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.

2.
Front Microbiol ; 12: 748706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721352

RESUMO

Francisella tularensis is known to release unusually shaped tubular outer membrane vesicles (OMV) containing a number of previously identified virulence factors and immunomodulatory proteins. In this study, we present that OMV isolated from the F. tularensis subsp. holarctica strain FSC200 enter readily into primary bone marrow-derived macrophages (BMDM) and seem to reside in structures resembling late endosomes in the later intervals. The isolated OMV enter BMDM generally via macropinocytosis and clathrin-dependent endocytosis, with a minor role played by lipid raft-dependent endocytosis. OMVs proved to be non-toxic and had no negative impact on the viability of BMDM. Unlike the parent bacterium itself, isolated OMV induced massive and dose-dependent proinflammatory responses in BMDM. Using transmission electron microscopy, we also evaluated OMV release from the bacterial surface during several stages of the interaction of Francisella with BMDM. During adherence and the early phase of the uptake of bacteria, we observed numerous tubular OMV-like protrusions bulging from the bacteria in close proximity to the macrophage plasma membrane. This suggests a possible role of OMV in the entry of bacteria into host cells. On the contrary, the OMV release from the bacterial surface during its cytosolic phase was negligible. We propose that OMV play some role in the extracellular phase of the interaction of Francisella with the host and that they are involved in the entry mechanism of the bacteria into macrophages.

3.
J Proteome Res ; 20(3): 1716-1732, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543941

RESUMO

Release of outer membrane vesicles (OMV) is an important phenomenon in Gram-negative bacteria playing multiple roles in their lifestyle, including in relation to virulence and host-pathogen interaction. Francisella tularensis, unlike other bacteria, releases unusually shaped, tubular OMV. We present a proteomic comparison of OMV and membrane fractions from two F. tularensis strains: moderately virulent subsp. holarctica strain FSC200 and highly virulent subsp. tularensis strain SchuS4. Proteomic comparison studies routinely evaluate samples from the same proteome, but sometimes we must compare samples from closely related organisms. This raises quantification issues. We propose a novel approach to cross-species proteomic comparison based on an intersection protein database from the individual single-species databases. This is less prone to quantification errors arising from differences in the sequences. Consecutively comparing subproteomes of OMV and membranes of the two strains allows distinguishing differences in relative protein amounts caused by global expression changes from those caused by preferential protein packing to OMV or membranes. Among the proteins most differently packed into OMV between the two strains, we detected proteins involved in biosynthesis and metabolism of bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids, as well as some major structural outer membrane proteins. The data are available via ProteomeXchange with identifier PXD022406.


Assuntos
Francisella tularensis , Tularemia , Membrana Externa Bacteriana , Francisella , Humanos , Proteoma/genética , Proteômica , Virulência
4.
Front Microbiol ; 10: 2304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649645

RESUMO

Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA