Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
J Hazard Mater ; 476: 135047, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959833

RESUMO

Arsenic (As) is a groundwater contaminant of global concern. The degradation of dissolved organic matter (DOM) can provide a reducing environment for As release. However, the interaction of DOM with local microbial communities and how different sources and types of DOM influence the biotransformation of As in aquifers is uncertain. This study used optical spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), metagenomics, and structural equation modeling (SEM) to demonstrate the how the biotransformation of As in aquifers is promoted. The results indicated that the DOM in high-As groundwater is dominated by highly unsaturated low-oxygen(O) compounds that are quite humic and stable. Metagenomics analysis indicated Acinetobacter, Pseudoxanthomonas, and Pseudomonas predominate in high-As environments; these genera all contain As detoxification genes and are members of the same phylum (Proteobacteria). SEM analyses indicated the presence of Proteobacteria is positively related to highly unsaturated low-O compounds in the groundwater and conditions that promote arsenite release. The results illustrate how the biogeochemical transformation of As in groundwater systems is affected by DOM from different sources and with different characteristics.

2.
Water Res ; 262: 122097, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018583

RESUMO

The UV/monochloramine (UV/NH2Cl) process, while efficiently eliminating micropollutants, produces toxic byproducts. This study utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to investigate molecular-level changes in natural organic matter (NOM) and to disclose formation pathways of nitro(so) and chloro byproducts in the UV/NH2Cl process. The UV/NH2Cl process significantly increased the saturation and oxidation levels and altered the elemental composition of NOM. Using 15N labeling and a screening workflow, nitro(so) byproducts with nitrogen originating from inorganic sources (i.e., reactive nitrogen species (RNS) and/or NH2Cl) were found to exhibit total intensities comparable to those from NOM. RNS, rather than NH2Cl, played a significant role in incorporating nitrogen into NOM. Through linkage analysis, nitro(so) addition emerged as an important reaction type among the 25 reaction types applied. By using phenol as a representative model compound, the nitro byproducts were confirmed to be mainly generated through the oxidation of nitroso byproducts instead of nitration. Machine learning and SHAP analysis further identified the major molecular indices distinguishing nitro(so) and chloro precursors from non-precursors. This study enhances our fundamental understanding of the mechanisms driving the generation of nitro(so) and chloro byproducts from their precursors in complex NOM during the UV/NH2Cl process.

3.
Water Res ; 262: 122084, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39018578

RESUMO

Global land-use changes alter the delivery of fluvial dissolved organic matter (DOM) along land-to-sea continuum. To study how spatial variations in watershed anthropogenic disturbances control chemodiversity and reactivity of DOM exported to oceans, we used fluorescent and ultra-high-resolution mass spectrometry to investigate spatial and seasonal variations of DOM properties along two subtropical coastal rivers with contrasting anthropogenic land-use distributions (North and West tributaries of Jiulong River, southeast China). Dissolved organic carbon (DOC) concentration and humic- and protein-like fluorescent DOM (FDOM) intensities were high in the mixed urban-agricultural impacted upper North River and lower West River. DOM molecular signatures suggested that the urban-sourced DOM is dominated by bio-labile, S-rich compounds, whereas the agricultural-sourced DOM is characterized by a mixture of bio-labile CHONS and bio-refractory CHON. This anthropogenic-induced spatial variation in DOM signatures was especially prominent during the dry season. Molecular analysis indicated that heteroatomic-containing (phosphorus-sulfur-nitrogen) DOM compounds are more biologically degradable, whereas most of the heteroatom-depleted and highly unsaturated CHO was stable during transport. Due to a longer transit distance and reservoir impoundment in North River, the urban-sourced aliphatic compounds were largely microbially removed or transformed into bio-refractory components, resulting in lower DOC fluxes and an increase of recalcitrance in the DOM exported to the ocean. Conversely, shorter transit times for anthropogenic inputs from the middle/lower West River increased watershed yield and export fluxes of DOC with higher bio-lability. Our study documents that transit history plays a crucial role in assessing the fate of anthropogenic DOM along the land-to-ocean continuum.

4.
Water Res ; 262: 122082, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39018581

RESUMO

As important organic components in water environments, effluent organic matters (EfOMs) from wastewater treatment plants are widely present in Mn-rich environments or engineered treatment systems. The redox interaction between manganese oxides (MnOx) and EfOMs can lead to their structural changes, which are crucial for ensuring the safety of water environments. Herein, the reactivities of MnOx with EfOMs were evaluated, and it was found that MnOx with high specific surface area, active high-valent manganese content and lattice oxygen content (i.e., amorphous MnO2) possessed stronger oxidizing ability towards EfOMs. Accompanying by EfOMs oxidation, Mn(IV) and Mn(III) were reduced into Mn(II), with Mn(III) as the significant active species. Through molecular-level transformation analysis by ultrahigh mass spectrometry (FT-ICR MS), the highly reactive compounds in EfOMs were clearly determined to be that with more aromatic and unsaturated structures, especially lignin-like compounds (the highest content in EfOMs (over 60 %)). EfOMs were oxidized by amorphous MnO2 into products with lower humification index (0.60 vs. 0.46), smaller apparent molecular weight (388.17 Da vs. 369.31 Da), and higher biodegradability (BOD5/COD: 0.12 vs. 0.78). This finding suggested that redox reactions between MnOx and EfOMs might alter their abiotic and biotic behaviors in receiving water environments.

5.
Environ Sci Technol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020513

RESUMO

Microplastic-derived dissolved organic matter (MP-DOM) is an emerging carbon source in the environment. Interactions between MP-DOM and iron minerals alter the transformation of ferrihydrite (Fh) as well as the distribution and fate of MP-DOM. However, these interactions and their effects on both two components are not fully elucidated. In this study, we selected three types of MP-DOM as model substances and utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the structural features of DOMs and DOM-mineral complexes at the molecular and atomic levels. Our results suggest that carboxyl and hydroxyl groups in MP-DOM increased the Fe-O bond length by 0.02-0.03 Å through interacting with Fe atoms in the first shell, thereby inhibiting the transformation of Fh to hematite (Hm). The most significant inhibition of Fh transformation was found in PS-DOM, followed by PBAT-DOM and PE-DOM. MP-DOM components, such as phenolic compounds and condensed polycyclic aromatics (MW > 360 Da) with high oxygen content and high unsaturation, exhibited stronger mineral adsorption affinity. These findings provide a profound theoretical basis for accurately predicting the behavior and fate of iron minerals as well as MP-DOM in complex natural environments.

6.
Nutrients ; 16(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999737

RESUMO

The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.


Assuntos
Aleitamento Materno , Fezes , Microbioma Gastrointestinal , Leite Humano , Humanos , Leite Humano/microbiologia , Leite Humano/química , Feminino , Recém-Nascido , Microbioma Gastrointestinal/fisiologia , Fezes/microbiologia , Lactente , Adulto , Metaboloma , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Masculino , Mães
7.
Water Res ; 261: 122056, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996733

RESUMO

The emission of methane (CH4) from streams and rivers contributes significantly to its global inventory. The production of CH4 is traditionally considered as a strictly anaerobic process. Recent investigations observed a "CH4 paradox" in oxic waters, suggesting the occurrence of oxic methane production (OMP). Human activities promoted dissolved organic carbon (DOC) in streams and rivers, providing significant substrates for CH4 production. However, the underlying DOC molecular markers of CH4 production in river systems are not well known. The identification of these markers will help to reveal the mechanism of methanogenesis. Here, Fourier transform ion cyclotron mass spectrometry and other high-quality DOC characterization, ecosystem metabolism, and in-situ net CH4 production rate were employed to investigate molecular markers attributing to riverine dissolved CH4 production across different land uses. We show that endogenous CH4 production supports CH4 oversaturation and positively correlates with DOC concentrations and gross primary production. Furthermore, sulfur (S)-containing molecules, particularly S-aliphatics and S-peptides, and fatty acid-like compounds (e.g., acetate homologs) are characterized as markers of water-column aerobic and anaerobic CH4 production. Watershed characterization, including riverine discharge, allochthonous DOC input, turnover, as well as autochthonous DOC, affects the CH4 production. Our study helps to understand riverine aerobic or anaerobic CH4 production relating to DOC molecular characteristics across different land uses.

8.
Environ Sci Technol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042037

RESUMO

Metal ions are liable to form metal-dissolved organic matter [dissolved organic matter (DOM)] complexes, changing the chemistry and chlorine reactivity of DOM. Herein, the impacts of iron and zinc ions (Fe3+ and Zn2+) on the formation of unknown chlorinated disinfection byproducts (Cl-DBPs) were investigated in a chlorination system. Fe3+ preferentially complexed with hydroxyl and carboxyl functional groups, while Zn2+ favored the amine functional groups in DOM. As a consequence, electron-rich reaction centers were created by the C-O-metal bonding bridge, which facilitated the electrophilic attack of α-C in metal-DOM complexes. Size-reactivity continuum networks were constructed in the chlorination system, revealing that highly aromatic small molecules were generated during the oxidation and decarbonization of metal-DOM complexes. Molecular transformation related to C-R (R represents complex sites) loss was promoted via metal complexation, including decarboxylation and deamination. Consequently, complexation with Fe3+ and Zn2+ promoted hydroxylation by the C-O-metal bonding bridge, thereby increasing the abundances of unknown polychlorinated Cl-DBPs by 9.6 and 14.2%, respectively. The study provides new insights into the regulation of DOM chemistry and chlorine reactivity by metal ions in chlorination systems, emphasizing that metals increase the potential health risks of drinking water and more scientific control standards for metals are needed.

9.
Sci Total Environ ; 947: 174628, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992371

RESUMO

The Tibetan Plateau, a typical high-altitude area, is less affected by human activities such as industrial development, and the external pollution to water sources is extremely low. Then it is also an important source of water samples for exploring the molecular characteristics of precursors in the dissolved organic matter (DOM) of disinfection byproducts (DBPs) in drinking water. Research data on DBPs in drinking water on the Tibet Plateau remains insufficient, leading to uncertainty about DBP contamination in the area. This study explores the formation potential of 35 typical DBPs, including 6 trihalomethanes (THMs), 9 haloacetic acids (HAAs), 2 halogenated ketones (HKs), 9 nitrosamines (NAs), and 9 aromatic DBPs, during chlorination and chloramination of typical source water samples in the Tibet Plateau of China. Moreover, in order to further investigate the characteristics of the generation of DBPs, the molecular composition of DOM in the collected water samples was characterized by Fourier transform ion cyclotron resonance mass spectrometry. The findings reveal that, for chlorination and chloramination, the average concentration of the five classes of DBPs was ranked as follows (chlorination, chloramination): HAAs (268.1 µg/L, 54.2 µg/L) > THMs (44.0 µg/L, 2.0 µg/L) > HKs (0.7 µg/L, 1.8 µg/L) > NAs (26.5 ng/L, 74.6 ng/L) > Aromatics (20.4 ng/L, 19.5 ng/L). The dominant compounds in THMs, HAAs, and NAs are trichloromethane, dichloroacetic acid, trichloroacetic acid, and nitrosopyrrolidine, respectively. This study highlights a significant positive correlation between DBP generation and UV254, SUV254, and the double bond equivalents of DOM in the source water. It systematically elucidates DOM molecular composition characteristics and DBP formation potential in high-altitude water sources, shedding light on key factors influencing DBP generation at the molecular level in high-altitude areas.

10.
Water Res ; 261: 121990, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38944002

RESUMO

Petrochemical wastewater (PCWW) treatment poses challenges due to its unique and complex dissolved organic matter (DOM) composition, originating from various industrial processes. Despite the addition of advanced treatment units in PCWW treatment plants to meet discharge standards, the mechanisms of molecular-level sights into DOM reactivity of the upgraded full-scale processes including multiple biological treatments and advanced treatment remain unclear. Herein, we employ water quality indexes, spectra, molecular weight (MW) distribution, and Fourier transform ion cyclotron resonance mass spectrometry to systematically characterize DOM in a typical PCWW treatment plant including influent, micro-oxygen hydrolysis acidification (MOHA), anaerobic/oxic (AO), and micro-flocculation sand filtration-catalytic ozonation (MFSF-CO). Influent DOM is dominated by tryptophan-like and soluble microbial products with MW fractions 〈 1 kDa and 〉 100 kDa, and CHO with lignin and aliphatic/protein structures. MOHA effectively degrades macromolecular CHO (10.86 %) and CHON (5.24 %) compounds via deamination and nitrogen reduction, while AO removes CHOS compounds with MW < 10 kDa by desulfurization, revealing distinct DOM conversion mechanisms. MFSF-CO transforms unsaturated components to less aromatic and more saturated DOM through oxygen addition reactions and shows high CHOS and CHONS reactivity via desulfurization and deamination reactions, respectively. Moreover, the correlation among multiple parameters suggests UV254 combined with AImod as a simple monitoring indicator of DOM to access the chemical composition. The study provides molecular-level insights into DOM for the contribution to the improvement and optimization of the upgraded processes in PCWW.

11.
Environ Sci Technol ; 58(25): 10991-11002, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38829627

RESUMO

Peatland wildfires contribute significantly to the atmospheric release of light-absorbing organic carbon, often referred to as brown carbon. In this study, we examine the presence of nitrogen-containing organic compounds (NOCs) within marine aerosols across the Western Pacific Ocean, which are influenced by peatland fires from Southeast Asia. Employing ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in electrospray ionization (ESI) positive mode, we discovered that NOCs are predominantly composed of reduced nitrogenous bases, including CHN+ and CHON+ groups. Notably, the count of NOC formulas experiences a marked increase within plumes from peatland wildfires compared to those found in typical marine air masses. These NOCs, often identified as N-heterocyclic alkaloids, serve as potential light-absorbing chromophores. Furthermore, many NOCs demonstrate pyrolytic stability, engage in a variety of substitution reactions, and display enhanced hydrophilic properties, attributed to chemical processes such as methoxylation, hydroxylation, methylation, and hydrogenation that occur during emission and subsequent atmospheric aging. During the daytime atmospheric transport, aging of aromatic N-heterocyclic compounds, particularly in aliphatic amines prone to oxidation and reactions with amine, was observed. The findings underscore the critical role of peatland wildfires in augmenting nitrogen-containing organics in marine aerosols, underscoring the need for in-depth research into their effects on marine ecosystems and regional climatic conditions.


Assuntos
Aerossóis , Nitrogênio/análise , Compostos Orgânicos/análise , Incêndios Florestais , Oceano Pacífico
12.
Molecules ; 29(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38893384

RESUMO

Analysis of the heavy fractions in crude oil has been important in petroleum industries. It is well known that heavy fractions such as vacuum gas oils (VGOs) include heteroatoms, of which sulfur and nitrogen are often characterized in many cases. We conducted research regarding the molecular species analysis of VGOs. Further refine processes using VGOs are becoming important when considering carbon recycling. In this work, we attempted to classify compounds within VGOs provided by Kuwait Institute for Scientific Research. Two VGOs were priorly distillated from Kuwait Export crude and Lower Fars crude. Quantitative analysis was performed mainly using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOFMS). MALDI-TOF-MS has been developed for analyzing high-molecular-weight compounds such as polymer and biopolymers. As matrix selection is one of the most important aspects in MALDI-TOFMS, the careful selection of a matrix was firstly evaluated, followed by analysis using a Kendrick plot with nominal mass series (z*). The objective was to evaluate if this work could provide an effective classification of VGOs compounds. The Kendrick plot is a well-known method for processing mass data. The difference in the Kendrick mass defect (KMD) between CnH2n-14S and CnH2n-20O is only 0.0005 mass units, which makes it difficult in general to distinguish these compounds. However, since the z* value showed effective differences during the classification of these compounds, qualitative analysis could be possible. The analysis using nominal mass series showed the potential to be used as an effective method in analyzing heavy fractions.

13.
Environ Res ; : 119436, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897433

RESUMO

Atmospheric particulate matter (PM) affects visibility, climate, biogeochemical cycles and human health. Water-soluble organic matter (WSOM) is an important component of PM. In this study, PM samples with size-resolved measurements at aerodynamic cut-point diameters (Dp) of 0.01-18µm were collected in the rural area of Baoding and the urban area of Dalian, Northern China. Non-targeted analysis was adopted for the characterization of the molecule constitutes of WSOM in different sized particles using Fourier transform-ion cyclotron resonance mass spectrometry. Regardless of the location, the composition of WSOM in Aitken mode particles (aerodynamic diameter < 0.05 µm) was similar. The WSOM in accumulation mode particles (0.05-2 µm) in Baoding was predominantly composed of CHO compounds (84.9%), which were mainly recognized as lignins and lipids species. However, S-containing compounds (64.2%), especially protein and carbohydrates species, accounted for most of the WSOM in the accumulation mode particles in Dalian. The CHO compounds (67.6%-79.7%) contributed the most to the WSOM in coarse mode particles (> 2 µm) from both sites. Potential sources analysis indicated the WSOM in Baoding were mainly derived from biomass burning and oxidation reactions, while the WSOM in Dalian arose from coal combustion, oxidation reactions, and regional transport.

14.
Environ Sci Technol ; 58(27): 11988-11997, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875444

RESUMO

Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.


Assuntos
Rios , Rios/química , Oceanos e Mares , Monitoramento Ambiental , Espectrometria de Massas , Compostos Orgânicos/análise
15.
Environ Sci Technol ; 58(27): 11998-12007, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935345

RESUMO

Landscape wildfires generate a substantial amount of dissolved black carbon (DBC) annually, yet the molecular nitrogen (N) structures in DBC are poorly understood. Here, we systematically compared the chemodiversity of N-containing molecules among three different DBC samples from rice straw biochar pyrolyzed at 300, 400, and 500 °C, one leached dissolved organic carbon (LDOC) sample from composted rice straw, and one fire-affected soil dissolved organic matter (SDOMFire) sample using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). N-Containing molecules contributed 20.0%, 36.1%, and 43.7% of total compounds in Combined DBC (pooling together the three DBC), LDOC, and SDOMFire, respectively, and molecules with fewer N atoms had higher proportions (i.e., N1 > N2 > N3). The N-containing molecules in Combined DBC were dominated by polycyclic aromatic (62.2%) and aromatic (14.4%) components, while those in LDOC were dominated by lignin-like (50.4%) and aromatic (30.1%) components. The composition and structures of N-containing molecules in SDOMFire were more similar to those in DBC than in LDOC. As the temperature rose, the proportion of the nitrogenous polycyclic aromatic component in DBC significantly increased with concurrent enhanced oxidation and unsaturation of N. As indicated by density functional theory (DFT)-based thermodynamic calculations, the proportion of aliphatic amide N decreased from 23.2% to 7.9%, whereas that of nitroaromatic N increased from 10.0% to 39.5% as the temperature increased from 300 to 500 °C; alternatively, the proportion of aromatic N in the 5/6 membered ring remained relatively stable (∼31%) and that of aromatic amide N peaked at 400 °C (32.7%). Our work first provides a comprehensive and thorough description of molecular N structures of DBC, which helps to better understand and predict their fate and biogeochemical behavior.


Assuntos
Espectrometria de Massas , Nitrogênio , Termodinâmica , Nitrogênio/química , Estrutura Molecular , Carbono/química , Solo/química
16.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872439

RESUMO

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Assuntos
Bromo , Águas Residuárias , Bromo/química , Bromo/toxicidade , Bromatos/química , Processos Fotoquímicos , Raios Ultravioleta , Ozônio/química , Purificação da Água/métodos , Águas Residuárias/toxicidade , Mamíferos , Animais , Células CHO , Cricetulus
17.
Water Res ; 260: 121902, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901314

RESUMO

The quantity and quality of dissolved organic matter (DOM) exported from source areas are closely related to hydrological linkage between source areas and streams, that is hydrological connectivity. However, understanding of how hydrological connectivity regulates the export of catchment DOM components remains inadequate. In this study, high-frequency monitoring of groundwater and runoff from subtropical humid catchment was conducted for 20 months, and hydrological connectivity was quantitatively characterized by considering both surface and subsurface hydrological processes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was utilized to investigate the DOM molecular composition. Results showed that over half of the areas in the catchment could not persistently establish hydrological connectivity with the stream during the rainfall. The average proportion of lignin was the highest in DOM components, followed by tannin and proteins. Additionally, both modified aromaticity index and double bond equivalence reached maximums at peak discharge, reflecting terrestrial materials could increase DOM aromaticity and unsaturated degree. Partial least square-structural equation modeling revealed significantly direct effects of rainfall, antecedent conditions, and hydrological connectivity on dissolved organic carbon (DOC) export. Furthermore, nonlinear relationships were observed between hydrological connectivity and DOC, tannin, and condensed aromatics. Specifically, the instantaneous DOC flux increased dramatically when the hydrological connectivity strength exceeded 0.14; tannin and condensed aromatics exhibited a rapid increase with rising connectivity strength, but remained stable at connectivity strength above 0.25. However, hydrological connectivity showed no significant correlation with unstable components (such as lipids, protein, amino sugars, and carbohydrates). These results provide new insights into hydrological controls on the quantity and quality of DOM export and contribute to developing appropriate catchment management strategies for carbon storage.


Assuntos
Água Subterrânea , Hidrologia , Água Subterrânea/química , Rios/química , Monitoramento Ambiental , Taninos/análise , Compostos Orgânicos/análise , Chuva
18.
J Environ Sci (China) ; 144: 159-171, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802228

RESUMO

Dissolved organic matter (DOM) is a heterogeneous pool of compounds and exhibits diverse adsorption characteristics with or without phosphorous (P) competition. The impacts of these factors on the burial and mobilization of organic carbon and P in aquatic ecosystems remain uncertain. In this study, an algae-derived DOM (ADOM) and a commercially available humic acid (HA) with distinct compositions were assessed for their adsorption behaviors onto iron (oxy)hydroxides (FeOx), both in the absence and presence of phosphate. ADOM contained less aromatics but more protein-like and highly unsaturated structures with oxygen compounds (HUSO) than HA. The adsorption capacity of FeOx was significantly greater for ADOM than for HA. Protein-like and HUSO compounds in ADOM and humic-like compounds and macromolecular aromatics in HA were preferentially adsorbed by FeOx. Moreover, ADOM demonstrated a stronger inhibitory effect on phosphate adsorption than HA. This observation suggests that the substantial release of autochthonous ADOM by algae could elevate internal P loading and pose challenges for the restoration of restore eutrophic lakes. The presence of phosphate suppressed the adsorption of protein-like compounds in ADOM onto FeOx, resulting in an increase in the relative abundance of protein-like compounds and a decrease in the relative abundance of humic-like compounds in post-adsorption ADOM. In contrast, phosphate exhibited no discernible impact on the compositional fractionation of HA. Collectively, our results show the source-composition characters of DOM influence the immobilization of both DOM and P in aquatic ecosystems through adsorption processes. The preferential adsorption of proteinaceous compounds within ADOM and aromatics within HA highlights the potential for the attachment with FeOx to diminish the original source-specific signatures of DOM, thereby contributing to the shared DOM characteristics observed across diverse aquatic environments.


Assuntos
Carbono , Compostos Férricos , Substâncias Húmicas , Lagos , Fosfatos , Fósforo , Poluentes Químicos da Água , Adsorção , Fósforo/química , Lagos/química , Fosfatos/química , Substâncias Húmicas/análise , Poluentes Químicos da Água/química , Carbono/química , Compostos Férricos/química , Modelos Químicos
19.
Environ Sci Technol ; 58(23): 10334-10346, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38805726

RESUMO

Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is becoming a non-negligible source of DOM pools in aquatic systems, but there is limited understanding about the photoreactivity of different MPs-DOM. Herein, MPs-DOM from polystyrene (PS), polyethylene terephthalate (PET), poly(butylene adipate-co-terephthalate) (PBAT), PE, and polypropylene (PP), representing aromatic, biodegradable, and aliphatic plastics, were prepared to examine their photoreactivity. Spectral and high-resolution mass spectrometry analyses revealed that PS/PET/PBAT-DOM contained more unsaturated aromatic components, whereas PE/PP-DOM was richer in saturated aliphatic components. Photodegradation experiments observed that unsaturated aromatic molecules were prone to be degraded compared to saturated aliphatic molecules, leading to a higher degradation of PS/PET/PBAT-DOM than PE/PP-DOM. PS/PET/PBAT-DOM was mainly degraded by hydroxyl (•OH) via attacking unsaturated aromatic structures, whereas PE/PP-DOM by singlet oxygen (1O2) through oxidizing aliphatic side chains. The [•OH]ss was 1.21-1.60 × 10-4 M in PS/PET/PBAT-DOM and 0.97-1.14 × 10-4 M in PE/PP-DOM, while the [1O2]ss was 0.90-1.35 × 10-12 and 0.33-0.44 × 10-12 M, respectively. This contributes to the stronger photoreactivity of PS/PET/PBAT-DOM with a higher unsaturated aromatic degree than PE/PP-DOM. The photodegradation of MPs-DOM reflected a decreasing tendency from aromatic-unsaturated molecules to aliphatic-saturated molecules. Special attention should be paid to the photoreactivity and environmental impacts associated with MPs-DOM containing highly unsaturated aromatic compounds.


Assuntos
Espectrometria de Massas , Microplásticos , Espécies Reativas de Oxigênio , Microplásticos/química , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água/química , Fotólise
20.
Environ Pollut ; 355: 124202, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788994

RESUMO

The characteristics of dissolved organic matter (DOM) serve as indicators of nitrate pollution in groundwater. However, the specific DOM components associated with nitrate in groundwater systems remain unclear. In this study, dual isotopes of nitrate, three-dimensional Excitation emission matrices (EEMs) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were utilized to uncover the sources of nitrate and their associations with DOM characteristics. The predominant nitrate in the targeted aquifer was derived from soil organic nitrogen (mean 46.0%) and manure &sewage (mean 34.3%). The DOM in nitrate-contaminated groundwater (nitrate-nitrogen >20 mg/L) exhibited evident exogenous characteristics, with a bioavailable content 2.58 times greater than that of uncontaminated groundwater. Regarding the molecular characteristics, DOM molecules characterized by CHO + 3N, featuring lower molecular weights and H/C ratios, indicated potential for mineralization, while CHONS formulas indicated the exogenous features, providing the potential for accurate traceability. These findings provided insights at the molecular level into the characterization of DOM in nitrate-contaminated groundwater and offer scientific guidance for decision-making regarding the remediation of groundwater nitrate pollution.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA