RESUMO
Heat wave intensity, frequency, and duration are increasing in many regions of the world, including locations where highly productive livestock are raised. There are animal health and welfare, as well as economic impacts from these events. In this study, the physiological responses of grain-fed steers during a high heat load challenge through to recovery in climate-controlled rooms (CCR) were intensively evaluated. Two cohorts of 12 Black Angus steers (BW, 615.4â ±â 40.1 kg) sequentially underwent a simulated heatwave event that consisted of 3 phases in the CCR: PreChallenge (5 d duration and temperature humidity index (THI) range of 65 to 71), Challenge (7-d duration and THI 66 to 95 with diurnal cycling), and Recovery (5 d duration and THI 65 to 70). The Challenge period was modeled on a severe heat wave, characterized by 3 very hot days. Individual rumen temperature (RumT, °C) was collected every 10 min, and respiration rate (RR, breaths per minute), panting score (PS), and water usage (L·steer-1·day-1) were obtained at multiple time points daily, by trained observers. Individual animal daily DMI was also determined. Morning (0700 hours) rectal temperature (RecT, °C) was measured on days 3, 5, 7 to 13, 15, and 17. Not unexpectedly, RumT, RecT, RR, and PS rose during Challenge and fell rapidly as conditions eased. Conversely, DMI was reduced during Challenge. During the transition between PreChallenge and Challenge, there were abrupt increases in RumT, and RR. It was also very apparent that during Recovery the steers did not return to the baseline PreChallenge state. Compared to PreChallenge, Recovery was characterized by persistent lowered daily mean RumT (Pâ =â 0.0010), RecT (Pâ =â 0.0922), RR (Pâ =â 0.0257), PS (Pâ ≤â 0.0001), and DMI (Pâ ≤â 0.0001). These results provide evidence that these steers have undergone an allostatic response in response to high heat load, and the new adjusted physiological state post-heat event may not be transient.
RESUMO
Our objectives were to determine whether the feedlot-level use of a direct-fed microbial (DFM; Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF24; Bovamine Defend®, 2 × 109 CFU/g) was associated with fecal prevalence and concentration of E. coli O157:H7, and determine pen- and feedlot-level risk factors associated with fecal E. coli O157:H7 prevalence in cattle pens from commercial feedlot operations. Twenty commercial feedlots in Nebraska, ten that included DFM (DFM) and ten that did not (no-DFM), were sampled during the summer of 2017. In each sampling month, 22 pen-floor fecal samples were collected from three pens in each feedlot. Samples were subjected to cultural and molecular procedures for the detection of E. coli O157:H7 (immunomagnetic separation, plating on selective media, followed by PCR confirmation) and spiral plating for quantification. A total of 1,320 samples from 180 pens of finishing cattle belonging to 20 feedlots, which were sampled three times throughout a 12-week period, were processed and tested. Across all feedlots and sampling months, the mean within-pen prevalence was 13.5% (95% CI = 2.6-47.4%). The association between DFM status and the within-pen prevalence of E. coli O157:H7 depended significantly (p < 0.05) on the sampling month. The second sampling month between late July and mid-August corresponded to the highest within-pen prevalence estimates reported in this study, with no-DFM pens having a higher prevalence than DFM pens. After accounting for the DFM status, and based on multivariable analyses, sampling month, average pen body weight, and weather conditions were significantly associated with the within-pen fecal prevalence of E. coli O157:H7. Collectively, these findings demonstrate that the use of a DFM containing Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF26 in feedlots showed potential in reducing fecal E. coli O157:H7 prevalence in cattle during times when prevalence peaks.
Assuntos
Ração Animal , Escherichia coli O157 , Fezes , Animais , Bovinos , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Nebraska , Propionibacterium , Contagem de Colônia Microbiana , Derrame de Bactérias , Lactobacillus/isolamento & purificação , PrevalênciaRESUMO
This study investigated the effects of feeding clinoptilolite (CLN; 2.5% of diet dry matter) with a particle size of either 30- or 400-µm on ruminal fermentation characteristics, measures of nitrogen (N) utilization, and manure ammonia-N (NH3) emissions in feedlot cattle. The impact of directly applying 30- or 400-µm CLN to the pen surface (2,250 kg/ha) on manure NH3-N emissions was also evaluated. Six beef heifers were used in a replicated 3â ×â 3 Latin square design with 21-d periods. Dietary treatments were 1) finishing ration with no supplement (CON), 2) CONâ +â 30-µm CLN (CLN-30), and 3) CONâ +â 400-µm CL (CLN-400). Intake was measured daily. To evaluate fermentation characteristics, ruminal fluid was collected on day 19. Indwelling pH loggers were used to measure ruminal pH from days 15 to 21. Blood was collected 3-h post-feeding on day 21 for metabolite analysis. Fecal grab and urine spot samples were also collected from days 19 to 21 to measure nutrient digestibility, route of N excretion, and in vitro NH3 emissions. There was no diet effect (Pâ ≥â 0.12) on nutrient intake and apparent total tract digestibility, and ruminal short-chain fatty acid profile and pH. Ruminal NH3 concentration, which was lower (Pâ =â 0.04) for CLN-30 than CON heifers, did not differ between CON and CLN-400 heifers. Although there was no diet effect (Pâ =â 0.50) on plasma urea-N (PUN) concentration, proportion of urea-N excreted in urine was lower (Pâ =â 0.01) for CLN-30 than CON and CLN-400 heifers. Urinary NH3-N excretion, which was greater (Pâ ≤â 0.04) for CLN-400 than CON heifers, did not differ between CLN-30 and CLN-400 heifers. Feeding CLN also increased (Pâ ≤â 0.02) fecal excretion of potassium (K) and iron (Fe) and reduced (Pâ =â 0.01) urinary excretion of calcium (Ca). There was a treatmentâ ×â time interaction (Pâ =â 0.01) for NH3 emission rate, which was greatest within the first 36 h of incubation and was lower for manure from CLN-400 compared to CON and CLN-30 heifers and pen surface application treatments. Cumulative NH3 emissions were lower (Pâ <â 0.01) for manure from CLN-400 compared to CON and CLN-30 heifers and the pen surface application treatments. Although surface application was ineffective, feeding 400-µm CLN to finishing cattle could result in a beneficial decrease in manure NH3 emissions. However, changes in fecal and urine excretion of minerals like K and Ca, which suggest a decrease in bioavailability, need to be considered when feeding CLN in finishing cattle diets.
There is interest in developing strategies that limit ammonia emissions from confined feeding operations, as it leads to both air and water pollution. Feeding zeolites like clinoptilolite (CLN) or directly applying them to pen surfaces to bind ammonia represents possible mitigation strategies. Although this could impact its effectiveness, there still is limited information on whether the particle size of CLN influences the binding of ammonia when fed or surface applied. Therefore, this study evaluated the effects of feeding supplemental CLN with a small (30-µm) or large particle size (400-µm) to finishing cattle on ruminal fermentation parameters, route of nitrogen excretion, and manure ammonia emissions. We also evaluated the effects of applying 30- and 400-µm CLN directly to the pen surface on manure ammonia emissions. Only CLN with the small particle size (30 µm) was effective in binding ruminal ammonia, which reduced the amount of urea excreted in urine. However, ammonia emissions were only lower for manure from finishing cattle fed CLN with the large particle size. Applying CLN to the pen surface was not effective in reducing ammonia emissions. There were also indications that fed CLN reduced bioavailability of potassium and iron.
Assuntos
Amônia , Ração Animal , Dieta , Esterco , Nitrogênio , Zeolitas , Animais , Bovinos/fisiologia , Amônia/metabolismo , Nitrogênio/metabolismo , Esterco/análise , Zeolitas/farmacologia , Zeolitas/administração & dosagem , Zeolitas/química , Ração Animal/análise , Feminino , Dieta/veterinária , Tamanho da Partícula , Fermentação , Rúmen/metabolismo , Digestão/efeitos dos fármacos , Digestão/fisiologia , Suplementos Nutricionais/análiseRESUMO
The study aimed to assess the impact of injectable trace mineral ("ITM"; Multimin90; Fort Collins, CO) supplementation on bacterial infection in cattle. Angus-crossbred steers (n = 32) were organized into two blocks by initial body weight. Steers were maintained on a ryelage and dry-rolled corn-based growing diet without supplementation of Zn, Cu, Mn, and Se for the duration of the study. The steers were transported 6 h, then randomized into three treatment groups: control received sterile saline ("CON"), ITM administered 1 day after transport (6 days before infection, "ITMPRE"), and ITM administered 2 days post infection (dpi) concurrent with antibiotic treatment ("ITMPOST"). Steers were infected with Mannheimia haemolytica on day 0, and all were treated with tulathromycin at 2 dpi. Plasma levels of Zn, Cu, and Se did not differ among treatments (P ≥ 0.74). Liver Se was higher in ITMPRE at 2 dpi (P < 0.05), and both ITM groups had higher liver Se at 5 dpi (P < 0.05) compared to CON. A time × treatment interaction was detected for liver Cu (P = 0.02). Clinical scores were lower (P < 0.05) in ITMPRE on 1 and 8 dpi and ITMPOST on 8 dpi compared to CON. Thoracic ultrasonography scores were lower in ITMPRE at 2 dpi compared to CON (P < 0.05) and ITMPOST (P < 0.1). No treatment effects (P > 0.10) were observed for bacterial detection from bronchoalveolar lavage (BAL) or nasopharyngeal swabs. At 5 dpi, both ITMPRE and ITMPOST showed higher frequencies of γδ T cells and NK cells in BAL compared to CON (P < 0.05). Before infection, leukocytes from ITMPRE steers produced more IL-6 (P < 0.01) in response to stimulation with the TLR agonist, Pam3CSK4. Use of ITM may be an effective strategy for improving disease resistance in feedlot cattle facing health challenges.
RESUMO
By definition, ill and injured animals are on the negative valence of animal welfare. For beef cattle kept in feedlot settings, advances in cattle health management have resulted in a greater understanding and prevention of illness and injury. However, the management of cattle once they become ill and injured is an understudied area, and there are gaps in knowledge that could inform evidence-based decision-making and strengthen welfare for this population. The aim of this review is to provide a comprehensive overview of the acquired knowledge regarding ill and injured feedlot cattle welfare, focusing on existing knowledge gaps and implications for hospital and chronic pen management and welfare assurance. Ill and injured feedlot cattle consist of acutely impaired animals with short-term health conditions that resolve with treatment and chronically impaired animals with long-term health conditions that may be difficult to treat. A literature search identified 110 articles that mentioned welfare and ill and injured feedlot cattle, but the population of interest in most of these articles was healthy cattle, not ill and injured cattle. Articles about managing ill and injured cattle in specialized hospital (n = 12) or chronic (n = 2) pens were even more sparse. Results from this literature search will be used to outline the understanding of acutely and chronically ill and injured feedlot cattle, including common dispositions and welfare considerations, behavior during convalescence, and strategies for identifying and managing ill and injured cattle. Finally, by working through specific ailments common in commercial feedlot environments, we illustrate how the Five Domains Model can be used to explore feelings and experiences and subsequent welfare state of individual ill or injured feedlot cattle. Using this approach and our knowledge of current industry practices, we identify relevant animal-based outcomes and critical research questions to strengthen knowledge in this area. A better understanding of this overlooked topic will inform future research and the development of evidence-based guidelines to help producers care for this vulnerable population.
RESUMO
Introduction: Bovine respiratory disease (BRD) is one of the most important animal health problems in the beef industry. While bacterial culture and antimicrobial susceptibility testing have been used for diagnostic testing, the common practice of examining one isolate per species does not fully reflect the bacterial population in the sample. In contrast, a recent study with metagenomic sequencing of nasal swabs from feedlot cattle is promising in terms of bacterial pathogen identification and detection of antimicrobial resistance genes (ARGs). However, the sensitivity of metagenomic sequencing was impeded by the high proportion of host biomass in the nasal swab samples. Methods: This pilot study employed a non-selective bacterial enrichment step before nucleic acid extraction to increase the relative proportion of bacterial DNA for sequencing. Results: Non-selective bacterial enrichment increased the proportion of bacteria relative to host sequence data, allowing increased detection of BRD pathogens compared with unenriched samples. This process also allowed for enhanced detection of ARGs with species-level resolution, including detection of ARGs for bacterial species of interest that were not targeted for culture and susceptibility testing. The long-read sequencing approach enabled ARG detection on individual bacterial reads without the need for assembly. Metagenomics following non-selective bacterial enrichment resulted in substantial agreement for four of six comparisons with culture for respiratory bacteria and substantial or better correlation with qPCR. Comparison between isolate susceptibility results and detection of ARGs was best for macrolide ARGs in Mannheimia haemolytica reads but was also substantial for sulfonamide ARGs within M. haemolytica and Pasteurella multocida reads and tetracycline ARGs in Histophilus somni reads. Discussion: By increasing the proportion of bacterial DNA relative to host DNA through non-selective enrichment, we demonstrated a corresponding increase in the proportion of sequencing data identifying BRD-associated pathogens and ARGs in deep nasopharyngeal swabs from feedlot cattle using long-read metagenomic sequencing. This method shows promise as a detection strategy for BRD pathogens and ARGs and strikes a balance between processing time, input costs, and generation of on-target data. This approach could serve as a valuable tool to inform antimicrobial management for BRD and support antimicrobial stewardship.
RESUMO
Two experiments evaluated carcass characteristics of finishing steers administered the maternal bovine appeasing substance (mBAS) prior to slaughter. In Exp. 1, 954 Angus-influenced finishing steers housed in 6 original pens were used. Each original pen was split into a pair of experimental pens 14.3 dâ ±â 3 d prior to slaughter, in a manner that number of steers and average pen body weight (BW; 636â ±â 4 kg) were similar. An oiler containing mBAS (Ferappease Finish Cattle 5%; FERA Diagnostics and Biologicals; College Station, TX) was added to one of the experimental pens 7 d prior to slaughter (nâ =â 6), whereas the other pen did not contain an oiler (CON; nâ =â 6). The oiler delivered 120 mL of mBAS/steer during a 7-d period. Steer BW was recorded 7 d prior to and during loading (final BW) to the packing plant. No treatment effects were detected (Pâ ≥â 0.51) for BW gain, final BW, and proportion of carcasses that graded Choice or Prime. Carcass dressing percentage was greater (Pâ =â 0.02) in mBAS compared with CON steers (65.9% vs. 64.2%; SEMâ =â 0.5), which was not sufficient to impact hot carcass weight (HCW; Pâ =â 0.29). Incidence of dark-cutting carcasses did not differ between treatments (Pâ =â 0.23). In Exp. 2, 80 Angus-influenced finishing steers housed in 16 pens (5 steers/pen; 600â ±â 4 kg of BW) were used. Pens were arranged in 4 rows of 4 pens/row, and rows were alternately assigned to receive an oiler containing mBAS (nâ =â 8) or mineral oil (CON+; nâ =â 8) 7 d prior to slaughter. Oilers were designed to deliver 120 mL/steer of mBAS or mineral oil during the 7-d period. Steer BW was recorded as in Exp. 1, and a blood sample was collected during exsanguination. No treatment effects were detected (Pâ ≥â 0.20) for BW parameters, carcass marbling score, backfat thickness, Longissimus muscle area, yield grade, and proportion of carcasses that graded Choice or Prime. Carcass dressing was greater (Pâ =â 0.02) in mBAS steers compared with CONâ +â (60.6 vs. 59.6%; SEMâ =â 0.3) but HCW did not differ (Pâ =â 0.47) between treatments. Plasma cortisol concentration was less (Pâ <â 0.01) in mBAS steers compared with CONâ +â (11.7 vs. 20.8 ng/mL; SEMâ =â 1.6). Incidence of dark-cutting carcasses did not differ (Pâ =â 0.53) between treatments. In summary, mBAS administration to finishing cattle using oilers during the last 7 d on feed alleviated the adrenocortical stress response elicited by the process of slaughter, which likely resulted in increased carcass dressing.
RESUMO
Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.
Assuntos
Fezes , Animais , Bovinos , Fezes/microbiologia , Sorogrupo , Humanos , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/isolamento & purificação , Contaminação de Alimentos/análiseRESUMO
Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. In this study, we evaluated the effect of a novel subunit targeted vaccine against bovine viral diarrhea virus (BVDV) in feedlot cattle, a major viral agent of BRD. The core of this novel vaccine is the fusion of the BVDV structural glycoprotein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present in antigen-presenting cells. To evaluate the vaccine, 2,992 animals were randomly allocated into two groups, control group (Nâ =â 1,491) and treatment group (Nâ =â 1,501). Animals of both groups received the routine sanitary plan: two doses of clostridial, respiratory, and rabies vaccines. Animals within the treatment group also received two doses of a targeted subunit vaccine against BVDV. Serum samples were taken on the day of the first inoculation (T0) and 90 d later (T90). Viral circulation was monitored using an anti-P80 ELISA (virus-specific) and immune response was evaluated by anti-E2 ELISA (detects virus and vaccine immune responses). Only animals treated for respiratory disease were considered positive cases of BRD. Results demonstrate that the control group had significantly more animals treated for BRD cases compared to the treatment group (5.9% vs. 3.7%, Pâ =â 0.02). The control group had a greater number of animals positive for anti-P80 antibodies and significantly fewer animals positive for anti-E2 antibodies compared to the treatment group (69% vs. 61% and 71% vs. 99%, respectively, Pâ =â 0.003), consistent with natural viral circulation within this group. The treatment group, conversely, had fewer animals positive for anti-P80 antibodies and a greater number of animals positive for anti-E2 antibodies, consistent with a robust vaccine-induced antibody response and a reduction of the BVDV circulation within this group. The data indicate the new subunit targeted vaccine induced greater anti-E2 antibodies and reduced the amount of BVD virus circulation within the treatment group leading to a fewer number of animals needing to be treated for BRD.
RESUMO
Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.
Assuntos
Suplementos Nutricionais , Zinco , Animais , Bovinos , Zinco/sangue , Masculino , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genéticaRESUMO
Mannheimia haemolytica is known as one of the major bacterial contributors to Bovine Respiratory Disease (BRD) syndrome. This study sought to establish a novel species-specific PCR to aid in identification of this key pathogen. As well, an existing multiplex PCR was used to determine the prevalence of serovars 1, 2 or 6 in Australia. Most of the 65 studied isolates originated from cattle with a total of 11 isolates from small ruminants. All problematic field isolates in the identification or serotyping PCRs were subjected to whole genome sequencing and bioinformatic analysis. The field isolates were also subjected to rep-PCR fingerprinting. A total of 59 out of the 65 tested isolates were conformed as M. haemolytica by the new species-specific PCR which is based on the rpoB gene. The confirmed M. haemolytica field isolates were assigned to serovars 1 (24 isolates), 2 (seven isolates) and 6 (26 isolates) while two of the isolates were negative in the serotyping PCR. The two non-typeable isolates were assigned to serovar 7 and 14 following whole genome sequencing and bioinformatic analysis. The rep-PCR typing resulted in five major clusters with serovars 1 and 6 often within the same cluster. The M. haemolytica-specific PCR developed in this work was species specific and should be a valuable support for frontline diagnostic laboratories. The serotyping results support the relative importance of serovars 1 and 6 in bovine respiratory disease.
Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Doenças Respiratórias , Bovinos , Animais , Bactérias/genética , Sorotipagem/métodos , Sorotipagem/veterinária , Doenças dos Bovinos/microbiologia , Ruminantes , Reação em Cadeia da Polimerase Multiplex/veterinária , Doenças Respiratórias/veterináriaRESUMO
Feed and water intake are two important aspects of cattle production that greatly impact the profitability, efficiency, and sustainability of producers. Feed and, to a lesser degree, water intake have been studied previously; however, there is little research on their associated animal behaviors and there is a lack of standardized phenotypes for these behaviors. Feed and water intakes obtained with an Insentec system (Hokofarm Group, The Netherlands) from 830 crossbred steers were used to compute five intake behaviors for both feed and water: daily sessions (DS), intake rate (IR), session size (SS), time per session (TS), and session interval (SI). Variance components and heritabilities were estimated for each trait. Heritabilities for feed intake behaviors were 0.50â ±â 0.12, 0.63â ±â 0.12, 0.40â ±â 0.13, 0.35â ±â 0.12, and 0.60â ±â 0.12 for DS, IR, SS, TS, and SI, respectively. Heritabilities for water intake behaviors were 0.56â ±â 0.11, 0.88â ±â 0.07, 0.70â ±â 0.11, 0.54â ±â 0.12, and 0.80â ±â 0.10 for NS, IR, SS, TS, and SI, respectively. Daily dry matter intake (DDMI) and daily water intake (DWI) had heritabilities of 0.57â ±â 0.11 and 0.44â ±â 0.11. Phenotypic correlations varied between pairs of traits (-0.83 to 0.82). Genetic correlations between DDMI and feed intake behaviors were moderate to high, while genetic correlations between DWI and water intake behaviors were low to moderate. Several significant single nucleotide polymorphisms (SNP) were identified for the feed and water intake behaviors. Genes and previously reported quantitative trait loci near significant SNPs were evaluated. The results indicated that feed and water intake behaviors are influenced by genetic factors and are heritable, providing one additional route to evaluate or manipulate feed and water intake.
Feed and water intake are important aspects of cattle production to understand because they impact producer profitability and sustainability. While feed intake and, to a lesser degree, water intake have previously been studied, the associated feeding and drinking behaviors are relatively unknown and lack standardized phenotypes. Using individual animal feed and water intake records, five behaviors were evaluated for feed and water intake from crossbred feedlot steers. The behaviors evaluated were daily sessions (no./d), session size (kg), time per session (s), intake rate (g/s), and session interval (min). The impact of season (winter vs. summer) and bunk management (ad libitum vs. slick) on feeding and drinking behaviors was evaluated. Heritability and variance components were estimated for all feeding and drinking behaviors. Pairwise phenotypic correlations between behaviors were discussed. The relationship between intake and feeding or drinking behaviors was evaluated with genetic correlations. A genome-wide association study identified several significant single nucleotide polymorphisms for feeding and drinking behaviors. The results indicate that feeding and drinking behaviors are heritable and may be one additional route to evaluate feed and water intake.
Assuntos
Ração Animal , Ingestão de Líquidos , Bovinos/genética , Animais , Ingestão de Alimentos/genética , Comportamento Animal , ÁguaRESUMO
Mycoplasma bovis is an important respiratory pathogen of cattle. In this study, the prevalence and antimicrobial susceptibility of M. bovis were evaluated from two Cohorts of feedlot cattle spanning an 8-year period. In the first study conducted in 2008-2009, nasopharyngeal swabs from cattle sampled at feedlot entry and after 60 days on feed were collected (Cohort 1). In a second study conducted in 2015-2016, nasopharyngeal and trans-tracheal samples were collected from cattle diagnosed with bovine respiratory disease (BRD) and matching healthy controls (Cohort 2). For Cohort 1, the prevalence of M. bovis was lower in cattle at entry compared to when the same individuals were sampled ≥60 days later (P < 0.05). For Cohort 2, the prevalence of M. bovis was greater in both nasopharyngeal and tracheal samples from cattle diagnosed with BRD, compared to controls (P < 0.05). In both Cohorts, almost all isolates were resistant to tilmicosin. Compared to M. bovis from Cohort 1, isolates of Cohort 2 exhibited increased resistance to clindamycin, enrofloxacin, florfenicol, tylosin, and tulathromycin, with the latter showing resistance levels >90 %. These data suggest that antimicrobials used to prevent and treat BRD selected for resistance in M. bovis over the 8-year period. For macrolides, cross-resistance occurred and M. bovis can retain resistance even when antimicrobial selection pressure is removed. Within 9 years of commercial availability of tulathromycin, the majority of M. bovis displayed resistance. Therefore, longitudinal evaluation of resistance in respiratory pathogens is important to ensure efficacious treatment of BRD.
Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Mycoplasma bovis , Doenças Respiratórias , Humanos , Bovinos , Animais , Prevalência , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doenças Respiratórias/veterinária , Sistema RespiratórioRESUMO
Cattle are recognized as the principal reservoir for Escherichia coli O157:H7 and preharvest food safety efforts often focus on decreasing shedding of this pathogen in cattle feces. Enogen® corn (EC; Syngenta Seeds, LLC) is genetically modified to produce enhanced concentrations of α-amylase in the corn kernel endosperm. Research has demonstrated improvements in feed efficiency for cattle fed EC and research has not yet explored whether improved digestion impacts foodborne pathogen populations in cattle. Therefore, this study explored effects of finishing diets containing EC on Escherichia coli O157:H7 prevalence in cattle. A 2 × 2 factorial experiment was conducted with steers (n = 960) fed diets consisting of 2 types of silage (EC or Control) and grain (EC or Control), fed daily ad libitum. Steers were grouped into 12 blocks by incoming body weight, blocks were randomly assigned to one of four pens, and pens were randomly assigned to one diet. Cattle were sampled using rectoanal mucosal swabs in cohorts of 298-337 cattle per day, for a total of 3 sampling days (15-16 days apart). Escherichia coli O157:H7 prevalence rates ranged from not detected (0/75) to 10.0% (8/80) depending on sampling day. Tests for the silage × corn interaction, and the main effects of silage and corn, were not significant (p > 0.05); however, EC reduced the odds of Escherichia coli O157:H7 prevalence by 43% compared to the control corn diet (p = 0.07). Diets containing EC tended to decrease Escherichia coli O157:H7 prevalence in feedlot cattle; however, this reduction was not significant. Before a conclusion can be drawn about impact of EC on Escherichia coli O157:H7 in cattle, further research is necessary to (1) determine if this tendency is due to increased alpha amylase activity and (2) elucidate impact on Escherichia coli O157:H7 prevalence and concentration, as well as a possible mechanism of action.
Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Escherichia coli O157 , Animais , Bovinos , alfa-Amilases , Ração Animal/análise , Contagem de Colônia Microbiana , Dieta/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Fezes , Zea maysRESUMO
This experiment compared ruminal, physiological, and productive responses of feedlot cattle receiving Yucca schidigera extract to replace or fed in conjunction with monensin + tylosin. Angus-influenced steers (n = 120) were ranked by body weight (BW; 315 ± 3 kg) and allocated to 4 groups of 30 steers each. Groups were housed in 1 of 4 drylot pens (30 × 12 m) equipped with GrowSafe feeding systems (4 bunks/pen) during the experiment (day -14 to slaughter). On day 0, groups were randomly assigned to receive a diet containing (2 × 2 factorial): 1) no inclusion or inclusion of monensin + tylosin (360 mg and 90 mg/steer daily, respectively) and 2) no inclusion or inclusion of Y. schidigera extract (4 g/steer daily). Steers were slaughtered in 3 groups balanced by treatment combination (36 steers on day 114, 36 steers on day 142, and 48 steers on day 169). Blood was sampled on days 0, 28, 56, and 84, and the day before shipping to slaughter. On day 41, eight rumen-cannulated heifers (BW = 590 ± 15 kg) were housed with steers (1 pair/pen). Pairs rotated among groups every 21 d, resulting in a replicated 4 × 4 Latin square (n = 8/treatment combination) with 14-d washout intervals. Heifers were sampled for blood and rumen fluid at the beginning and end of each 21-d period. Monensin + tylosin inclusion decreased (P < 0.01) feed intake and improved (P = 0.02) feed efficiency of steers, but did not alter (P ≥ 0.17) steer BW gain or carcass merit traits. Inclusion of Y. schidigera extract did not impact (P ≥ 0.30) steer performance and carcass characteristics. Plasma glucose, insulin, insulin-like growth factor-I, and urea-N concentrations were not affected (P ≥ 0.16) by monensin + tylosin, nor by Y. schidigera extract inclusion in steers and heifers. Ruminal pH in heifers was increased (P = 0.04) by monensin + tylosin, and also by (P = 0.03) Y. schidigera extract inclusion. Rumen fluid viscosity was reduced (P = 0.04) by Y. schidigera extract, and rumen protozoa count was increased (P < 0.01) by monensin + tylosin inclusion. The proportion of propionate in the ruminal fluid was increased (P = 0.04) by monensin + tylosin, and tended (P = 0.07) to be increased by Y. schidigera extract inclusion. Hence, Y. schidigera extract yielded similar improvements in rumen fermentation compared with monensin + tylosin, but without increasing performance and carcass quality of finishing cattle. No complimentary effects were observed when combining all these additives into the finishing diet.
RESUMO
Feedlot cattle commonly shed the foodborne pathogen Escherichia coli O157:H7 in their feces. Megasphaera elsdenii (ME), a lactic acid-utilizing bacterium, is commonly administered to cattle to avoid lactate accumulation in the rumen and to control ruminal acidosis. The impact of administering ME on foodborne pathogen prevalence, specifically E. coli O157:H7, has not been explored. The purpose of this study was to quantify E. coli O157:H7 prevalence in finishing cattle administered ME. Cattle (n = 448) were assigned to treatments in a randomized complete block design with repeated measurements over two sampling periods. Treatments were arranged as a 2 × 2 factorial containing: ruminally protected lysine (RPL; included for a complementary study) fed at 0% or 0.45% of diet dry matter; with or without ME. Freeze-dried ME was administered as an oral drench (1 × 1010 CFU/steer on day one) and then top dressed onto basal diets (1 × 107 CFU/steer) daily thereafter. Rectoanal mucosal swabs (RAMS) were obtained from animals before harvest to determine the E. coli O157:H7 prevalence. The inclusion of RPL (P = 0.2136) and ME (P = 0.5012) did not impact E. coli O157:H7 prevalence, and RPL was not included in any significant interactions (P > 0.05). A significant interaction was observed between ME and sampling period (P = 0.0323), indicating that the effect of ME on E. coli O157:H7 prevalence varied over the sampling period. A diet containing ME reduced the odds of E. coli O157:H7 prevalence by 50% during sampling period 1 (8.0% and 14.7% for cattle with and without ME, respectively) and increased the odds by 23% during sampling period 2 (10.8% and 8.9% for cattle with and without ME, respectively). Administering ME in cattle diets did not impact E. coli O157:H7 in feedlot cattle. This is the first study to investigate the use of ME as a preharvest food safety intervention in cattle, and additional research is necessary to determine the efficacy.
Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Escherichia coli O157 , Probióticos , Animais , Bovinos , Masculino , Ração Animal/análise , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Megasphaera elsdenii , Prevalência , OvinosRESUMO
Multidrug resistant (MDR) Escherichia coli threaten the preservation of antimicrobials to treat infections in humans and livestock. Thus, it is important to understand where antimicrobial-resistant E. coli persist and factors that contribute to its their development. Crossbred cattle (n = 249; body weight = 244 kg ±25 kg standard deviation) were blocked by arrival date and assigned metaphylactic antimicrobial treatments of sterile saline control, tulathromycin (TUL), ceftiofur, or florfenicol at random. Trimethoprim-sulfamethoxazole (COTR) and third-generation cephalosporin (CTXR)-resistant E. coli were isolated from fecal samples on days 0, 28, 56, 112, 182, and study END (day 252 for block 1 and day 242 for block 2). Then, susceptibility testing was conducted on all confirmed isolates. MDR was detected in both COTR and CTXR E. coli isolates. In COTR isolates, the number of antimicrobials each isolate was resistant to and the minimum inhibitory concentration (MIC) for amoxicillin-clavulanic acid, ceftriaxone, and gentamicin was greatest on day 28 compared with all other days (p ≤ 0.04). Similarly, chloramphenicol MIC was greater on day 28 than on day 0 (p < 0.01). Overall, sulfisoxazole MIC was less for TUL than all other treatments (p ≤ 0.02), and trimethoprim-sulfamethoxazole MIC was greater for TUL than all other treatments (p ≤ 0.03). Finally, there was no effect of treatment, day, or treatment × day for tetracycline or meropenem MIC (p ≥ 0.07). In CTXR isolates, there was an effect of day for all antimicrobials tested except ampicillin and meropenem (p ≤ 0.06). In conclusion, administering a metaphylactic antimicrobial at feedlot arrival did influence the susceptibility of COTR and CTXR E. coli. However, MDR E. coli are widely distributed, and the MIC for most antimicrobials was not different from the initial value upon completion of the feeding period.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Meropeném/farmacologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , MasculinoRESUMO
Subacute ruminal acidosis (SARA) in feedlot cattle during the feed transition to grain-based diets is a significant constraint to animal health and productivity. This experiment assessed an antibiotic-free supplement (ProTect®) effects on ruminal pH variability and methane (CH4) emissions of cattle during the challenge of SARA. Ten 18-month-old Angus steers (472 ± 4.8 kg) were randomly allocated into monensin (n = 5) and ProTect® groups (n = 5) and progressively introduced to grain diets incorporating monensin or ProTect® for 36 days of the experiment [starter (7 days; 45% grain), T1 (7 days; 56% grain), T2 (7 days; 67% grain), finisher (15 days; 78% grain)]. The pH variability on the finisher period was reduced by the ProTect® supplement (6.6% vs. 5.2%; P < 0.01), with CH4 emissions being significantly higher relative to the monensin group [88.2 g/day (9.3 g CH4/kg DMI) vs. 133.7 g/day (14.1 g CH4/kg DMI); P < 0.01]. There was no difference between treatments in the time spent on the ruminal pH < 5.6 or < 5.8 (P > 0.05). The model evaluation for the ruminal pH variation indicated that the mean absolute error (MAE) proportion for both groups was good within the same range [4.05% (monensin) vs. 4.25% (ProTect®)] with identical root mean square prediction error (RMSPE) (0.34). It is concluded that the ProTect® supplement is an effective alternative to monensin for preventing SARA in feedlot cattle by managing ruminal pH variation during the transition to high-grain diets. Both monensin and ProTect® supplemented cattle exhibited lower CH4 yield compared to cattle fed forages and low-concentrate diets.
Assuntos
Acidose , Doenças dos Bovinos , Bovinos , Animais , Monensin/farmacologia , Monensin/metabolismo , Ração Animal/análise , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Metano , Rúmen/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais , Acidose/prevenção & controle , Acidose/veterinária , Acidose/metabolismo , Grão Comestível , Concentração de Íons de Hidrogênio , Fermentação , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/metabolismoRESUMO
This study compared the relative abundance of bacteria in the nasal cavity of high-risk beef heifers at feedlot arrival according to subsequent incidence of bovine respiratory disease (BRD). Angus-influenced heifers (n = 76) were transported for 1,100 km (11 h) to the feedlot (day -1). At feedlot arrival (day 0), heifers were weighed [shrunk body weight (BW) = 234 ± 15 kg] and a nasal cavity swab collected for microbiota analysis. Heifers were ranked by arrival BW and allocated into 6 pens on day 1 where they remained until day 55. Heifers were evaluated daily for BRD signs (days 0 to 55), and a final shrunk BW was recorded on day 56 (16-h feed and water deprivation). Heifers were classified according to number of antimicrobial treatments for BRD received (0, 1, or ≥2), or according to time of the first incidence of BRD signs (no incidence [NOBRD], early incidence [EARLY; 4.1 ± 0.1 d, ranging from 3 to 6 d], or late incidence [LATE; 18.5 ± 9.6 d, ranging from 10 to 28 d]). Average daily gain decreased linearly (P = 0.04) according to number of BRD treatments, and was less (P = 0.04) in LATE and tended (P = 0.08) to be less in EARLY compared with NOBRD. The abundance of the Tenericutes phylum increased linearly (P < 0.01), while the abundance of other phyla (e.g., Firmicutes and Bacteroidetes) decreased linearly (P ≤ 0.05) and phyla diversity tended to decrease linearly (P = 0.10) according to number of BRD treatments. Heifers classified as EARLY had greater (P = 0.01) abundance of Tenericutes compared with NOBRD, whereas Tenericutes abundance in LATE heifers was intermediate and did not differ (P = 0.22) compared with EARLY and NOBRD. The abundance of Mycoplasma genus increased linearly (P < 0.01) while the abundance of other genera (e.g., Corynebacterium and Blautia) and genera diversity decreased linearly (P ≤ 0.03) according to number of BRD treatments. Heifers classified as EARLY had greater (P = 0.01) abundance of Mycoplasma and reduced (P = 0.01) genera diversity compared with NOBRD, and values noted in LATE heifers for these variables were intermediate and not different (P ≥ 0.27) compared with EARLY and NOBRD. Hence, heifers that developed BRD during the experiment had altered nasal microbiota at arrival compared with heifers that remained healthy, particularly increased prevalence of Tenericutes and Mycoplasma. Such differences in nasal microbiota were heightened in heifers that developed BRD shortly after arrival, or that required multiple antimicrobial treatments.
Bovine respiratory disease (BRD) is the most common disease in feedlot cattle and costs the US cattle industry more than $2 billion annually. Such economical losses include mortality, wasted feed resources, pharmaceutical inputs, and decreased performance of morbid cattle. Hence, research to understand the etiology of BRD is critical to lessen the incidence and productive impacts of this disease in feedlot systems. The upper respiratory tract is home to a plethora of bacteria associated with BRD in cattle, whereas the composition and stress-related imbalances in this microbiota can lead to the disease. Based on this rationale, this experiment evaluated the microbiota composition in the nasal cavity of newly receiving feedlot heifers and contrasted with subsequent prevalence of BRD. In general, heifers that develop BRD had altered nasal microbiota at the time of feedlot arrival compared with heifers that remained healthy. Such differences in microbiota were heightened in heifers that developed BRD shortly after arrival, or heifers that required multiple antimicrobial treatments upon disease occurrence.
Assuntos
Doenças dos Bovinos , Microbiota , Doenças Respiratórias , Bovinos , Animais , Feminino , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/tratamento farmacológico , Antibacterianos , Doenças Respiratórias/veterinária , Peso CorporalRESUMO
Salmonella can persist in the feedlot pen environment, acting as a source of transmission among beef cattle. Concurrently, cattle that are colonized with Salmonella can perpetuate contamination of the pen environment through fecal shedding. To study these cyclical dynamics, pen environment and bovine samples were collected for a 7-month longitudinal comparison of Salmonella prevalence, serovar, and antimicrobial resistance profiles. These samples included composite environment, water, and feed from the feedlot pens (n = 30) and cattle (n = 282) feces and subiliac lymph nodes. Salmonella prevalence across all sample types was 57.7%, with the highest prevalence in the pen environment (76.0%) and feces (70.9%). Salmonella was identified in 42.3% of the subiliac lymph nodes. Based on a multilevel mixed-effects logistic regression model, Salmonella prevalence varied significantly (P < 0.05) by collection month for most sample types. Eight Salmonella serovars were identified, and most isolates were pansusceptible, except for a point mutation in the parC gene, associated with fluoroquinolone resistance. There was a proportional difference in serovars Montevideo, Anatum, and Lubbock comparing the environment (37.2, 15.9, and 11.0%, respectively), fecal (27.5, 22.2, and 14.6%, respectively), and lymph node (15.6, 30.2, and 17.7%, respectively) samples. This suggests that the ability of Salmonella to migrate from the pen environment to the cattle host-or vice versa-is serovar specific. The presence of certain serovars also varied by season. Our results provide evidence that Salmonella serovar dynamics differ when comparing environment and host; therefore, developing serovar-specific preharvest environmental Salmonella mitigation strategies should be considered. IMPORTANCE Salmonella contamination of beef products, specifically from the incorporation of bovine lymph nodes into ground beef, remains a food safety concern. Current postharvest Salmonella mitigation techniques do not address Salmonella bacteria that are harbored in the lymph nodes, nor is it well understood how Salmonella invades the lymph nodes. Alternatively, preharvest mitigation techniques that can be applied to the feedlot environment, such as moisture applications, probiotics, or bacteriophage, may reduce Salmonella before dissemination into cattle lymph nodes. However, previous research conducted in cattle feedlots includes study designs that are cross-sectional, are limited to point-in-time sampling, or are limited to sampling of the cattle host, making it difficult to assess the Salmonella interactions between environment and hosts. This longitudinal analysis of the cattle feedlot explores the Salmonella dynamics between the feedlot environment and beef cattle over time to determine the applicability of preharvest environmental treatments.