Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Virulence ; : 2411543, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39359062

RESUMO

Candida krusei, also known as Pichia kudriavzevii, is an emerging non-albicans Candida (NAC) species causing both superficial and deep-seated infections in humans. This fungal pathogen is inherently resistant to the first-line antifungal drug, fluconazole, and is widely distributed in natural environments such as soil, foods, vegetables, and fruits. In this study, we collected 86 C. krusei strains from clinical settings and traditional fermented vegetables from different areas of China. Compared to C. krusei strains from fermented vegetables, clinical isolates exhibited a higher ability to undergo filamentation and biofilm development, which could facilitate its host colonization and infections. Isolates from fermented vegetables showed higher resistance to several antifungal drugs including fluconazole, voriconazole, itraconazole, amphotericin B, and caspofungin, than clinical strains, while they were more susceptible to posaconazole than clinical strains. Although C. krusei has been thought to be a diploid organism, we found that one-fourth of clinical strains and the majority of isolates from fermented vegetables (87.5%) are triploid. Whole-genome sequencing and population genetic analyses demonstrated that isolates from clinical settings and fermented food are genetically associated, and distributed across a wide range of genetic clusters. Additionally, we found that six nucleotide substitutions at the promoter region of the ABC11 gene, encoding a multidrug efflux pump, could play a critical role in antifungal resistance in this species. Given the ubiquitous distribution of C. krusei strains in fermented vegetables and their genetic association with clinical strains, a One Health approach will be necessary to control the prevalence of this pathogen.

2.
Nutr Res ; 131: 96-110, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39378660

RESUMO

Modulation of the gut microbiota through specific dietary interventions shows potential for maintenance and optimization of health. A dietary fiber diet and fermented foods diet appear to alter the gut microbiota, but evidence is limited. Therefore, we designed the Gut Health Enhancement by Eating Favorable Food study, a 21-week randomized controlled trial studying effects of dietary fibers and fermented foods on gut microbiota diversity and composition, while also stimulating dietary behavior changes through a citizen science (CS) approach. We hypothesized that a high-fermented food diet would increase microbial diversity, whereas a high-dietary fiber diet would stimulate the growth of specific fiber-degrading bacteria. The following elements of CS were adopted: education on the gut microbiota, tailored dietary intervention, remote data collection by participants, sharing of personal gut microbiota outcomes with participants, and vlogs by participants for dissemination of results. Here we describe the study protocol and report the flow of participants, baseline characteristics, and compliance rates. Completed in March 2024, the trial included 147 healthy adults randomized to a high-dietary fiber intervention, high-fermented food intervention, or control group. Each group received an additional study product after 2 weeks: dried chicory root, a fermented beverage, or maltodextrin (placebo). A 3-month follow-up assessed the participants' ability to sustain dietary changes. The recruitment of participants was successful, reflected by 1448 applications. The compliance with the dietary guidelines and study products was >90%. This study shows that including elements of CS in an randomized controlled trial is feasible and may help recruitment and compliance.

3.
Foods ; 13(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39272473

RESUMO

Pathogenic microorganisms have been detected in fermented food. Combining the enormous class of the pathogens and their continuously appearing mutants or novel species, it is important to select suitable and safe antibacterial agents for fermented food safety. Lactic acid bacteria (LAB) which produce diverse imperative antimicrobial metabolites have an immense number of applications in the food industry. Here, the human-derived strain YT was isolated due to its cell-free supernatant (CFS-YT) and cells (Cs-YT), respectively performed obvious inhibitory ring to Gram-positive and -negative spoilage bacteria. Strain YT was identified as Lacticaseibacillus rhamnosus by the 16s rDNA sequence and morphology. The antibacterial activity of CFS-YT was demonstrated to be growth-dependent, pHs-sensitive, broadly thermostable and enzyme-insensitive. Cs-YT displayed a broad antibacterial spectrum with the action mode of bacteriostasis. The antibacterial activity of Cs-YT was due to substances located at the cell surface which were sensitive to heat, stable at broad pH gradients and sensitive to specific enzymes. These data suggested that L. rhamnosus YT could be used as an alternative antimicrobial agent in fermented food biopreservation.

4.
J Agric Food Chem ; 72(39): 21829-21842, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39300777

RESUMO

Indole, a compound in Chinese stinky tofu (ST), acts as a ligand for the aryl hydrocarbon receptor (AHR). Despite extensive research on prebiotic compounds, indole's specific role in ST remains unexplored. This study used an ethanol gavage method to create an ALD (alcoholic liver disease) mouse model and investigate dietary indole's effects on the intestinal barrier. Our findings indicate that after 6 weeks of being fed ST, the indole present (2 mg/day) robustly activated the intestinal AHR, upregulating its target gene, CYP1A1 (cytochrome P450 1A1 enzyme). This activation significantly reduced intestinal permeability, mitigated alcohol-induced oxidative stress and inflammation, and restored intestinal barrier function. Consequently, the study demonstrates that foodborne indole substantially reduces alcohol absorption and lowers the expression levels of liver inflammation-related factors, thereby slowing the progression of ALD. These results highlight indole's therapeutic potential for treating ALD and its role in developing functional foods.


Assuntos
Indóis , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Indóis/farmacologia , Indóis/química , Masculino , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , População do Leste Asiático
5.
J Sci Food Agric ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169898

RESUMO

BACKGROUND: Various antioxidant components have been reported in Japanese rice wine (sake), while the contribution ratio of each component to the antioxidant capacity of whole sake has not been well understood. In this study, we evaluated the radical absorption capacity (H-ORAC and/or DPPH radical scavenging ability) and antioxidant components of commercially available sake, and estimated the major components contributing to antioxidant capacity. RESULTS: Water-soluble components with a molecular weight of less than 3000 contributed more than 90% to H-ORAC of sake by measuring the ultrafiltered fraction. The Maillard reaction seemed to have little influence on H-ORAC by browning experiments. The radical absorption capacity of sake showed a strong positive correlation with the amounts of four antioxidant amino acids (Cys, Met, Tyr, Trp) and two phenolic acids (ferulic acid and p-coumaric acid). Evaluating H-ORAC of a sake model solution composed of these antioxidants revealed that the four amino acids showed a clearly higher contribution (25.7-58.2%) than the phenolic acids. In addition, there was a slight synergistic effect when the four amino acids were mixed, whereas such effects were not seen when mixed with the phenolic acids and other sake major components (organic acids, glucose and ethanol). CONCLUSION: We concluded that the contribution of free amino acids to the radical absorption capacity is quite important in sake. These findings will provide a new perspective for antioxidant researches of sake and many fermented foods. © 2024 Society of Chemical Industry.

6.
Data Brief ; 55: 110750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100785

RESUMO

This strain was isolated from traditionally (homemade) fermented Lithuanian cherry tomatoes. The genome consists of 55 contigs with a total size of 3,326,119 bp, an N50 of 170738, and a GC% of 44.3 %. According to the COG annotation, most of these proteins were divided into three categories related to transcription (K category: 307), amino acid transport and metabolism (E category: 222), and carbohydrate transport and metabolism (G category: 268). No genes associated with antimicrobial resistance or virulence factors were identified. The data presented here can be used in comparative genomics to identify antimicrobial resistance genes and virulence factors that may be present in relevant Lactobacillus species. PlasmidFinder server revealed the presence of plasmid pR18 (assessment number JN601038) in the genome that has lincomycin resistance, can be transferred from one bacterium to another, and is one of the most common plasmids in the genera Bacillus and Lactobacillus. The draft genome sequence data have been deposited with NCBI under Bioproject under accession number PRJNA947394.

7.
Molecules ; 29(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203019

RESUMO

From ancient times to the present day, fermentation has been utilized not only for food preservation but also for enhancing the nutritional and functional properties of foods. This process is influenced by numerous factors, including the type of microorganisms used, substrate composition, pH, time, and temperature, all of which can significantly alter the characteristics of the final product. Depending on the parameters, fermentation enhances the bioactive content of the products and imparts the necessary properties, such as antioxidant characteristics, for the products to be considered functional. The enhancement of these properties, particularly antioxidant activity, enriches foods with bioactive compounds and functional attributes, contributing to improved health benefits. Through a review of recent research, this study elucidates how different fermentation processes can enhance the bioavailability and efficacy of antioxidants, thereby improving the nutritional and functional qualities of foods. This study investigated the multifaceted effects of fermentation on antioxidant properties by exploring various types and conditions of fermentation. It highlights specific examples from dairy products and other food categories as well as the valorization of food waste and byproducts. The findings underscore the potential of fermentation as a sustainable method to produce health-promoting foods with elevated antioxidant activities, offering new perspectives for food science and technology.


Assuntos
Antioxidantes , Fermentação , Antioxidantes/metabolismo , Antioxidantes/química , Laticínios
8.
Microbiol Spectr ; 12(10): e0366823, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162551

RESUMO

Latilactobacillus sakei is an important bacterial species used as a starter culture for fermented foods; however, two subspecies within this species exhibit different properties in the foods. Matrix-assisted laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF MS) is the gold standard for microbial fingerprinting. However, the resolution power is down to the species level. This study was to combine MALDI-TOF mass spectra and machine learning to develop a new method to identify two L. sakei subspecies (L. sakei subsp. sakei and L. sakei subsp. carnosus) and non-L. sakei species. Totally, 227 strains were collected, with 908 spectra obtained via on- and off-plate protein extraction. Only 68.7% of strains were correctly identified at the subspecies level in the Biotyper database; however, a high level of performance was observed from the machine learning models. Partial least squares-discriminant analysis (PLS-DA), principal component analysis-K-nearest neighbor (PCA-KNN), and support vector machine (SVM) demonstrated 0.823, 0.914, and 0.903 accuracies, respectively, whereas the random forest (RF) achieved an accuracy of 0.954, with an area under the receiver operating characteristic (AUROC) curve of 0.99, outperforming the other algorithms in distinguishing the subspecies. The machine learning proved to be a promising technique for the rapid and high-resolution classification of L. sakei subspecies using MALDI-TOF MS. IMPORTANCE: Latilactobacillus sakei plays a significant role in the realm of food bacteria. One particular subspecies of L. sakei is employed as a protective agent during food fermentation, whereas another strain is responsible for food spoilage. Hence, it is crucial to precisely differentiate between the two subspecies of L. sakei. In this study, machine learning models based on protein mass peaks were developed for the first time to distinguish L. sakei subspecies. Furthermore, the efficacy of three commonly used machine learning algorithms for microbial classification was evaluated. Our results provide the foundation for future research on developing machine learning models for the classification of microbial species or subspecies. In addition, the developed model can be used in the food industry to monitor L. sakei subspecies in fermented foods in a time- and cost-effective method for food quality and safety.


Assuntos
Proteínas de Bactérias , Latilactobacillus sakei , Aprendizado de Máquina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas de Bactérias/análise , Latilactobacillus sakei/classificação , Latilactobacillus sakei/química , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Técnicas de Tipagem Bacteriana/métodos , Máquina de Vetores de Suporte
9.
Compr Rev Food Sci Food Saf ; 23(5): e13428, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39165144

RESUMO

Fermented foods have been a component of the human diet since ancient times, including live bacteria employed to restore gut health, contributing to the frontline of functional food progression. Human concern about the harmful consequences of possible contaminants has increased significantly as their toxicity, carcinogenicity, and teratogenicity have become more publicized. In order to take preventive measures, it is essential to correctly identify and define the implications of contaminants and toxins in human health and intestinal microbiota balance for preventing or diagnosing epidemics before they cause damage. The longer food chain that results from urbanization and underreporting of diseases makes it harder to correlate contaminated food to disease, which in turn presents challenges to improving food safety. This research aims to present the potential physical, chemical, and microbiological pollutants and toxins found in fermented products and their effects on human health. The scope tackles various categories of fermented foods, such as dairy products, alcoholic and nonalcoholic beverages, fermented meat products, traditional bakery products, and fermented cereals and vegetables. Furthermore, it examines specific control processes such as rigorous sanitation protocols, advanced packaging technologies, regulatory harmonization, and decontamination methodologies used to prevent the release of contaminants from fermented foods. Future viewpoints and opportunities are briefly mentioned in the conclusion.


Assuntos
Alimentos Fermentados , Contaminação de Alimentos , Humanos , Alimentos Fermentados/análise , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Inocuidade dos Alimentos/métodos , Microbiologia de Alimentos
10.
Foods ; 13(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39200461

RESUMO

In fermented foods, acetic acid bacteria (AAB), kinds of bacteria with a long history of utilization, contribute to safety, nutritional, and sensory properties primarily through acetic acid fermentation. AAB are commonly found in various fermented foods such as vinegar, sour beer, fermented cocoa and coffee beans, kefir beverages, kombucha, and sourdough. They interact and cooperate with a variety of microorganisms, resulting in the formation of diverse metabolites and the production of fermented foods with distinct flavors. Understanding the interactions between AAB and other microbes is crucial for effectively controlling and utilizing AAB in fermentation processes. However, these microbial interactions are influenced by factors such as strain type, nutritional conditions, ecological niches, and fermentation duration. In this review, we examine the relationships and research methodologies of microbial interactions and interaction studies between AAB and yeasts, lactic acid bacteria (LAB), and bacilli in different food fermentation processes involving these microorganisms. The objective of this review is to identify key interaction models involving AAB and other microorganisms. The insights gained will provide scientific guidance for the effective utilization of AAB as functional microorganisms in food fermentation processes.

11.
J Agric Food Chem ; 72(31): 17465-17480, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046216

RESUMO

Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.


Assuntos
Proteínas de Bactérias , Alimentos Fermentados , Lactobacillus , Fenetilaminas , Tiramina , Tiramina/metabolismo , Fenetilaminas/metabolismo , Fenetilaminas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Lactobacillus/enzimologia , Lactobacillus/genética , Lactobacillus/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Simulação de Acoplamento Molecular , Cinética , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química , Fermentação
12.
Artigo em Inglês | MEDLINE | ID: mdl-38965196

RESUMO

The skin, being the largest organ in the human body, plays a pivotal role in safeguarding the body against invasive pathogens. Therefore, it is essential to reinforce and protect this vital organ. Current research supports the impact of probiotics on skin health and their ability to alleviate various skin disorders. However, the effectiveness and probable side effects of probiotics in skin care remain a subject of debate, necessitating further investigation and analysis. Hence, this study aims to highlight existing gaps and future needs in the current research on probiotics in skin care and pave the way for future investigations. Therefore, we scrutinized the effects of oral (fermented foods and dietary supplements) and non-oral/topical probiotics on skin care, and the mechanism of probiotics that affect skin health. The results of most studies showed that fermented foods containing probiotics, particularly dairy products, positively impact skin health. The research results regarding the efficacy of probiotic supplements and live strains in treating skin disorders show promising potential. However, safety evaluations are crucial, to identify any potential adverse effects. While research has identified numerous potential mechanisms by which probiotics may influence skin health, a complete understanding of their precise mode of action remains elusive. However, it seems that probiotics can exert their positive effects through the gut-skin and gut-skin-brain axis on the human body. Therefore, following the identification of safe probiotics, additional studies should be carried out to establish optimal dosages, potential side effects, suitable regulatory guidelines, and validation methods.

13.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012297

RESUMO

Fermentation is a critical technological process for flavor development in fermented foods. The combination of odor and taste, known as flavor, is crucial in enhancing people's perception and psychology toward fermented foods, thereby increasing their acceptance among consumers. This review summarized the determination and key flavor compound screening methods in fermented foods and analyzed the flavor perception, perceptual interactions, and evaluation methods. The flavor compounds in fermented foods could be separated, purified, and identified by instrument techniques, and a molecular sensory science approach could identify the key flavor compounds. How flavor compounds bind to their respective receptors determines flavor perception, which is influenced by their perceptual interactions, including odor-odor, taste-taste, and odor-taste. Evaluation methods of flavor perception mainly include human sensory evaluation, electronic sensors and biosensors, and neuroimaging techniques. Among them, the biosensor-based evaluation methods could facilitate the investigation of the flavor transduction mechanism and the neuroimaging technique could explain the brain's signals that relate to the perception of flavor and how they compare to signals from other senses. This review aims to elucidate the flavor profile of fermented foods and highlight the significance of comprehending the interactions between various flavor compounds, thus improving the healthiness and sensory attributes.

14.
Foodborne Pathog Dis ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021233

RESUMO

Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.

15.
Food Res Int ; 191: 114724, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059920

RESUMO

Plant-based cheese analogs have emerged as a novel global market trend driven by sustainability concerns for our planet. This study examines eleven soft ripened plant-based cheese analogs produced in Europe, primarily with bloomy rinds and cashew nuts as the main ingredient. First, we focused on exploring the macronutrients and salt content stated on the labels, as well a detailed fatty acid analysis of the samples. Compared to dairy cheeses, plant-based cheeses share similarities in lipid content, but their fatty acid profiles diverge significantly, with higher ratio of mono- and polyunsaturated fatty acids such as oleic and linoleic acids. We also investigated the microbiota of these analog products, employing a culture-dependent and -independent approaches. We identified a variety of microorganisms in the plant-based cheeses, with Lactococcus lactis and Leuconostoc mesenteroides being the dominant bacterial species, and Geotrichum candidum and Penicillium camemberti the dominant fungal species. Most of the species characterized are similar to those present in dairy cheeses, suggesting that they have been inoculated as culture starters to contribute to the sensorial acceptance of plant-based cheeses. However, we also identify several species that are possibly intrinsic to plant matrices or originate from the production environment, such as Pediococcus pentosaceus and Enterococcus spp. This coexistence of typical dairy-associated organisms with plant associated species highlights the potential microbial dynamics inherent in the production of plant-based cheese. These findings will contribute to a better understanding of plant-based cheese alternatives, enable the development of sustainable products, and pave the way for future research exploring the use of plant-based substrates in the production of cheese analogues.


Assuntos
Queijo , Microbiologia de Alimentos , Queijo/microbiologia , Queijo/análise , Europa (Continente) , Valor Nutritivo , Ácidos Graxos/análise , Bactérias/classificação
16.
Food Chem X ; 22: 101483, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840723

RESUMO

The primary goal of this study was to assess the effect of selective fermentation on the nutritional and techno-functional characteristics of fermented millet-skim milk-based product. The product was made with HHB-311 biofortified pearl millet (PM) flour, skim milk powder, and isolated cultures (either alone or in combination) of Limosilactobacillus fermentum MS005 (LF) and Lactobacillus rhamnosus GG 347 (LGG). To optimize fermentation time, time intervals 8, 16, and 24 h were explored, while the temperature was kept 37 °C. Results of protein digestibility showed that LF (16 h) and LGG (24 h) fermented samples had significantly higher (P < 0.05) protein digestibility of 90.75 ± 1.6% and 93.76 ± 3.4%, respectively, than that of control (62.60 ± 2.6%). Further, 16 h fermentation with LF showed enhanced iron (39%) and zinc (14%) bioavailability. The results suggested that LF with 16 h fermentation is most suitable for making millet-based fermented products with superior techno-functional attributes and micronutrient bioavailability.

17.
Methods Mol Biol ; 2820: 21-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941011

RESUMO

The metaproteomic approach allows a deep microbiome characterization in different complex systems. Based on metaproteome data, microbial communities' composition, succession, and functional role in different environmental conditions can be established.The main challenge in metaproteomic studies is protein extraction, and although many protocols have been developed, a few are focused on the protein extraction of fermented foods. In this chapter, a reproducible and efficient method for the extraction of proteins from a traditionally fermented starchy food is described. The method can be applied to any fermented food and aims to enrich the extraction of proteins from microorganisms for their subsequent characterization.


Assuntos
Alimentos Fermentados , Proteômica , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Proteômica/métodos , Fermentação , Proteínas/isolamento & purificação , Proteínas/análise , Microbiota , Microbiologia de Alimentos/métodos
18.
Compr Rev Food Sci Food Saf ; 23(4): e13394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925624

RESUMO

Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.


Assuntos
Lipopeptídeos , Lipopeptídeos/química , Lipopeptídeos/biossíntese , Antioxidantes/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Aditivos Alimentares/química , Conservantes de Alimentos/química , Relação Estrutura-Atividade , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
19.
mSystems ; 9(7): e0020124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38860825

RESUMO

The surface of smear-ripened cheeses constitutes a dynamic microbial ecosystem resulting from the successive development of different microbial groups such as lactic acid bacteria, fungi, and ripening bacteria. Recent studies indicate that a viral community, mainly composed of bacteriophages, also represents a common and substantial part of the cheese microbiome. However, the composition of this community, its temporal variations, and associations between bacteriophages and their hosts remain poorly characterized. Here, we studied a French smear-ripened cheese by both viral metagenomics and 16S metabarcoding approaches to assess both the succession of phages and bacterial communities on the cheese surface during cheese ripening and their temporal variations in ready-to-eat cheeses over the years of production. We observed a clear transition of the phage community structure during ripening with a decreased relative abundance of viral species (vOTUs) associated with Lactococcus phages, which were replaced by vOTUs associated with phages infecting ripening bacteria such as Brevibacterium, Glutamicibacter, Pseudoalteromonas, and Vibrio. The dynamics of the phage community was strongly associated with bacterial successions observed on the cheese surface. Finally, while some variations in the distribution of phages were observed in ready-to-eat cheeses produced at different dates spanning more than 4 years of production, the most abundant phages were detected throughout. This result revealed the long-term persistence of the dominant phages in the cheese production environment. Together, these findings offer novel perspectives on the ecology of bacteriophages in smear-ripened cheese and emphasize the significance of incorporating bacteriophages in the microbial ecology studies of fermented foods.IMPORTANCEThe succession of diverse microbial populations is critical for ensuring the production of high-quality cheese. We observed a temporal succession of phages on the surface of a smear-ripened cheese, with new phage communities showing up when ripening bacteria start covering this surface. Interestingly, the final phage community of this cheese is also consistent over large periods of time, as the same bacteriophages were found in cheese products from the same manufacturer made over 4 years. This research highlights the importance of considering these bacteriophages when studying the microbial life of fermented foods like cheese.


Assuntos
Bacteriófagos , Queijo , Queijo/microbiologia , Queijo/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bactérias/virologia , Bactérias/genética , Bactérias/isolamento & purificação , Microbiota , Microbiologia de Alimentos , França , Metagenômica , Viroma
20.
Food Chem ; 454: 139798, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823201

RESUMO

Ingestion of fermented foods impacts human immune function, yet the bioactive food components underlying these effects are not understood. Here, we interrogated whether fermented food bioactivity relates to microbial metabolites derived from aromatic amino acids, termed aryl-lactates. Using targeted metabolomics, we established the presence of aryl-lactates in commercially available fermented foods. After pinpointing fermented food-associated lactic acid bacteria that produce high levels of aryl-lactates, we identified fermentation conditions to increase aryl-lactate production in food matrices up to 5 × 103 fold vs. standard fermentation conditions. Using ex vivo reporter assays, we found that food matrix conditions optimized for aryl-lactate production exhibited enhanced agonist activity for the human aryl-hydrocarbon receptor (AhR) as compared to standard fermentation conditions and commercial products. Reduced microbial-induced AhR activity has emerged as a hallmark of many chronic inflammatory diseases, thus we envision strategies to enhance AhR bioactivity of fermented foods to be leveraged to improve human health.


Assuntos
Aminoácidos Aromáticos , Fermentação , Alimentos Fermentados , Receptores de Hidrocarboneto Arílico , Humanos , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Aminoácidos Aromáticos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Lactobacillales/metabolismo , Lactatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA