Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Transl Res ; 16(8): 4101-4119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262727

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a highly aggressive cancer with poor prognosis and limited therapeutic options. Identifying molecular markers and understanding their role in PAAD pathogenesis is crucial for developing targeted therapies. This study integrates bioinformatics and molecular experiments to investigate the diagnostic, prognostic, and therapeutic significance of FGFBP1 in PAAD. METHODS: UALCAN, TNMplot, OncoDB, GEPIA2, HPA, GSCA, KM Plotter, TISIDB, TISCH2, CancerSEA, STRING, DAVID, cell culture, RT-qPCR analysis, western blot analysis, colony formation, cell proliferation, and wound healing assays. RESULTS: Expression analyses revealed a significantly elevated FGFBP1 levels in PAAD tissues compared to normal samples. Promoter methylation analysis indicated lower methylation levels in PAAD, inversely correlated with FGFBP1 expression, suggesting epigenetic regulation. Genetic alteration analysis showed that FGFBP1 is not significantly affected by single nucleotide variants, but copy number variations are present without impacting mRNA expression. Survival analysis using KM plotter demonstrated that high FGFBP1 expression is associated with poor overall and disease-free survival. A Cox regression-based prognostic model confirmed the negative impact of elevated FGFBP1 on patient outcomes. Correlation analysis with immune-related factors indicated that FGFBP1 may contribute to an immunosuppressive tumor microenvironment, affecting immune cell infiltration and function. Single-cell analysis highlighted FGFBP1 expression in malignant, endothelial, and fibroblast cells within the tumor microenvironment. Gene enrichment analysis revealed FGFBP1's involvement in various biological processes and pathways related to cancer progression. Experimental validation using RT-qPCR confirmed high FGFBP1 expression in PAAD cell lines. FGFBP1 knockdown in HEK293T cells significantly reduced cell proliferation, colony formation, and migration. CONCLUSION: These findings suggest that FGFBP1 plays a critical role in PAAD pathogenesis and could serve as a potential therapeutic target for improving patient outcomes.

2.
Front Pharmacol ; 15: 1408389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005939

RESUMO

Lymphoma positions as the fifth most common cancer, in the world, reporting remarkable deaths every year. Several promising strategies to counter this disease recently include utilizing small molecules that specifically target the lymphoma cellular proteins to overwhelm its progression. FGFBP1 is a soluble intracellular protein that progresses cancer cell proliferation and is upregulated in several cancers. Therefore, inhibiting FGFBP1 could significantly slow down lymphoma progression through triggering apoptosis. Thus, in this study, a flavonoid B4, isolated from Cajanus cajan, has been investigated for its effects of B4 on lymphoma, specifically as an FGFBP1 inhibitor. B4 could selectively hinder the growth of lymphoma cells by inducing caspase-dependent intrinsic apoptosis through G1/S transition phase cell cycle arrest. RNA sequencing analysis revealed that B4 regulates the genes involved in B-cell proliferation and DNA replication by inhibiting FGFBP1 in vitro. B4 increases the survival rate of lymphoma mice. B4 also represses the growth of patient-derived primary lymphoma cells through FGFBP1 inhibition. Drug affinity responsive target stability experimentations authorize that B4 powerfully binds to FGFBP1. The overexpression of FGFBP1 raises the pharmacological sensitivity of B4, supplementing its specific action on lymphoma cells. This study pioneers the estimation of B4 as a possible anticancer agent for lymphoma treatment. These outcomes highlight its selective inhibitory effects on lymphoma cell growth by downregulating FGFBP1 expression through intrinsic apoptosis, causing mitochondrial and DNA damage, ultimately leading to the inhibition of lymphoma progression. These suggest B4 may be a novel FGFBP1 inhibitor for the lymphoma treatment.

3.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848677

RESUMO

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Assuntos
Mucosa Intestinal , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Linhagem da Célula , Regeneração , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Camundongos Endogâmicos C57BL , Homeostase
4.
Front Immunol ; 14: 1223650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575248

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant and lethal human cancers in the world due to its high metastatic potential, and patients with PDAC have a poor prognosis, yet quite little is understood regarding the underlying biological mechanisms of its high metastatic capacity. Baicalein has a dramatic anti-tumor function in the treatment of different types of cancer. However, the therapeutic effects of baicalein on human PDAC and its mechanisms of action have not been extensively understood. In order to explore the biological characteristic, molecular mechanisms, and potential clinical value of baicalein in inhibiting the metastatic capacity of PDAC. We performed several in vitro, in vivo, and in silico studies. We first examined the potential regulation of baicalein in the metastatic capacity of PDAC cells. We showed that baicalein could dramatically suppress liver metastasis of PDAC cells with highly metastatic potential in mice model. The high-throughput sequencing analysis was employed to explore the biological roles of baicalein in PDAC cells. We found that baicalein might be involved in the infiltration of Cancer-Associated Fibroblasts (CAF) in PDAC. Moreover, a baicalein-related risk model and a lncRNA-related model were built by Cox analysis according to the data set of PDAC from TCGA database which suggested a clinical value of baicalein. Finally, we revealed a potential downstream target of baicalein in PDAC, we proposed that baicalein might contribute to the infiltration of CAF via FGFBP1. Thus, we uncovered a novel role for baicalein in regulation of PDAC liver metastasis that may contribute to its anti-cancer effect. We proposed that baicalein might suppress PDAC liver metastasis via regulation of FGFBP1-mediated CAF infiltration. Our results provide a new perspective on clinical utility of baicalein and open new avenues for the inhibition of liver-metastasis of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Prognóstico , Microambiente Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Pancreáticas
5.
Hum Cell ; 36(4): 1403-1415, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37076641

RESUMO

Formation and maintenance of skin barrier function require tightly controlled membrane-associated proteolysis, in which the integral membrane Kunitz-type serine protease inhibitor, HAI-1, functions as the primary inhibitor of the membrane-associated serine proteases, matriptase and prostasin. Previously, HAI-1 loss in HaCaT human keratinocytes resulted in an expected increase in prostasin proteolysis but a paradoxical decrease in matriptase proteolysis. The paradoxical decrease in shed active matriptase is further investigated in this study with an unexpected discovery of novel functions of fibroblast growth factor-binding protein 1 (FGFBP1), which acts as an extracellular ligand that can rapidly elicit F-actin rearrangement and subsequently affect the morphology of human keratinocytes. This novel growth factor-like function is in stark contrast to the canonical activity of this protein through interactions with FGFs for its pathophysiological functions. This discovery began with the observation that HAI-1 KO HaCaT cells lose the characteristic cobblestone morphology of the parental cells and exhibit aberrant F-actin formation along with altered subcellular targeting of matriptase and HAI-2. The alterations in cell morphology and F-actin status caused by targeted HAI-1 deletion can be restored by treatment with conditioned medium from parental HaCaT cells, in which FGFBP1 was identified by tandem mass spectrometry. Recombinant FGFBP1 down to 1 ng/ml was able to revert the changes caused by HAI-1 loss. Our study reveals a novel function of FGFBP1 in the maintenance of keratinocyte morphology, which depends on HAI-1.


Assuntos
Actinas , Glicoproteínas de Membrana , Humanos , Actinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Queratinócitos/metabolismo , Proteólise , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
6.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430763

RESUMO

Genes associated with growth factors were previously analyzed in a radiation- and estrogen-induced experimental breast cancer model. Such in vitro experimental breast cancer model was developed by exposure of the immortalized human breast epithelial cell line, MCF-10F, to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17ß-estradiol. The MCF-10F cell line was analyzed in different stages of transformation after being irradiated with either a single 60 cGy dose or 60/60 cGy doses of alpha particles. In the present report, the profiling of differentially expressed genes associated with growth factors was analyzed in their relationship with clinical parameters. Thus, the results indicated that Fibroblast growth factor2 gene expression levels were higher in cells transformed by radiation or in the presence of ionizing radiation; whereas the fibroblast growth factor-binding protein 1gene expression was higher in the tumor cell line derived from this model. Such expressions were coincident with higher values in normal than malignant tissues and with estrogen receptor (ER) negative samples for both gene types. The results also showed that transforming growth factor alpha gene expression was higher in the tumor cell line than the tumorigenic A5 and the transformed A3 cell line, whereas the transforming growth factor beta receptor 3 gene expression was higher in A3 and A5 than in Tumor2 cell lines and the untreated controls and the E cell lines. Such gene expression was accompanied by results indicating negative and positive receptors for transforming growth factor alpha and the transforming growth factor beta receptor 3, respectively. Such expressions were low in malignant tissues when compared with benign ones. Furthermore, Fibroblast growth factor2, the fibroblast growth factor-binding protein 1, transforming growth factor alpha, the transforming growth factor beta receptor 3, and the insulin growth factor receptor gene expressions were found to be present in all BRCA patients that are BRCA-Basal, BRCA-LumA, and BRCA-LumB, except in BRCA-Her2 patients. The results also indicated that the insulin growth factor receptor gene expression was higher in the tumor cell line Tumor2 than in Alpha3 cells transformed by ionizing radiation only; then, the insulin growth factor receptor was higher in the A5 than E cell line. The insulin growth factor receptor gene expression was higher in breast cancer than in normal tissues in breast cancer patients. Furthermore, Fibroblast growth factor2, the fibroblast growth factor-binding protein 1, transforming growth factor alpha, the transforming growth factor beta receptor 3, and the insulin growth factor receptor gene expression levels were in stages 3 and 4 of breast cancer patients. It can be concluded that, by using gene technology and molecular information, it is possible to improve therapy and reduce the side effects of therapeutic radiation use. Knowing the different genes involved in breast cancer will make possible the improvement of clinical chemotherapy.


Assuntos
Neoplasias da Mama , Fator de Crescimento Transformador alfa , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Estrogênios , Radiação Ionizante , Insulina Regular Humana , Linhagem Celular Tumoral , Insulina , Receptores de Fatores de Crescimento Transformadores beta , Fatores de Crescimento de Fibroblastos
7.
Front Immunol ; 13: 954836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119059

RESUMO

Accurate prediction of Bacillus Calmette-Guérin (BCG) response is essential to identify bladder cancer (BCa) patients most likely to respond sustainably, but no molecular marker predicting BCG response is available in clinical routine. Therefore, we first identified that fibroblast growth factor binding protein 1 (FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1 had a poor outcome for BCa patients in the E-MTAB-4321 and GSE19423 datasets. These different expression genes associated with FGFBP1 expression are mainly involved in neutrophil activation, neutrophil-mediated immunity, and tumor necrosis factor-mediated signal pathways in biological processes. A significant positive correlation was observed between FGFBP1 expression and regulatory T-cell (Treg) infiltration by the Spearman correlation test in the BCG cohort (r = 0.177) and The Cancer Genome Atlas (TCGA) cohort (r = 0.176), suggesting that FGFBP1 may influence the response of BCa patients to BCG immunotherapy through immune escape. Though FGFBP1 expression was positively correlated with the expressions of PD-L1, CTLA4, and PDCD1 in TCGA cohort, a strong association between FGFBP1 and PD-L1 expression was only detected in the BCG cohort (r = 0.750). Furthermore, elevated FGFBP1 was observed in BCa cell lines and tissues in comparison to corresponding normal controls by RT-qPCR, Western blotting, and immunohistochemical staining. Increased FGFBP1 was further detected in the failures than in the responders by immunohistochemical staining. Notably, FGFBP1 is positively associated with PD-L1 expression in BCa patients with BCG treatment. To sum up, FGFBP1 in BCa tissue could be identified as a promising biomarker for the accurate prediction of BCG response in BCa.


Assuntos
Mycobacterium bovis , Neoplasias da Bexiga Urinária , Antígeno B7-H1 , Vacina BCG/uso terapêutico , Biomarcadores , Antígeno CTLA-4 , Fatores de Crescimento de Fibroblastos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Fator de Necrose Tumoral alfa/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
8.
Neurobiol Dis ; 162: 105583, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902552

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a currently incurable disease that causes progressive motor neuron loss, paralysis and death. Skeletal muscle pathology occurs early during the course of ALS. It is characterized by impaired mitochondrial biogenesis, metabolic dysfunction and deterioration of the neuromuscular junction (NMJ), the synapse through which motor neurons communicate with muscles. Therefore, a better understanding of the molecules that underlie this pathology may lead to therapies that slow motor neuron loss and delay ALS progression. Kruppel Like Factor 15 (KLF15) has been identified as a transcription factor that activates alternative metabolic pathways and NMJ maintenance factors, including Fibroblast Growth Factor Binding Protein 1 (FGFBP1), in skeletal myocytes. In this capacity, KLF15 has been shown to play a protective role in Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), however its role in ALS has not been evaluated. Here, we examined whether muscle-specific KLF15 overexpression promotes the health of skeletal muscles and NMJs in the SOD1G93A ALS mouse model. We show that muscle-specific KLF15 overexpression did not elicit a significant beneficial effect on skeletal muscle atrophy, NMJ health, motor function, or survival in SOD1G93A ALS mice. Our findings suggest that, unlike in mouse models of DMD and SMA, KLF15 overexpression has a minimal impact on ALS disease progression in SOD1G93A mice.


Assuntos
Esclerose Lateral Amiotrófica , Fatores de Transcrição Kruppel-Like , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Longevidade , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 997-1008, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34117747

RESUMO

Fibroblast growth factor-binding protein 1 (FGFBP1) promotes fibroblast growth factor (FGF) activity by releasing FGFs from extracellular matrix storage. We previously reported that the tumor suppressor F-box and WD repeat domain-containing 7 suppresses FGFBP1 by reducing expression of c-Myc, which inhibits the proliferation and migration of pancreatic cancer cells. However, the potential mechanism by which FGFBP1 facilitates pancreatic ductal adenocarcinoma (PDAC) remains unexplored. In this study, we focused on the function of FGFBP1 in the interplay between cancer-associated fibroblasts (CAFs) and pancreatic cancer cells (PCCs). Decreased FGF22 expression was detected in CAFs co-cultured with PCCs with FGFBP1 abrogation, which was verified in the cell culture medium by enzyme-linked immunosorbent assay. Active cytokine FGF22 significantly facilitated the migration and invasion of PANC-1 and Mia PaCa-2 cells. The number of penetrating PCCs cocultured with CAFs with FGF22 abrogation was significantly less than that of the control group. Interestingly, higher expressions of FGF22 and fibroblast growth factor receptor 2 (FGFR2) were associated with worse prognosis of patients with PDAC and FGFR2, an independent prognostic marker of PDAC. The PANC-1 and Mia PaCa-2 cells with silenced FGFR2 showed weaker invasion and metastasis, even if these cells were simultaneously treated with cytokine FGF22. These results revealed that FGFBP1-mediated interaction between CAFs and PCCs via FGF22/FGFR2 facilitates the migration and invasion of PCCs. FGFR2 could act as a prognostic marker for patients with PDAC.


Assuntos
Comunicação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Fatores de Crescimento de Fibroblastos/genética , Fibroblastos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
10.
Cancers (Basel) ; 13(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072393

RESUMO

Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. It is also recognized as a pro-angiogenic molecule because of its interaction with fibroblast growth factor (FGF)-2. In this study, we examined the functional role of HBp17/FGFBP-1 in A431 and HO-1-N-1 cells. Originally, HBp17/FGFBP-1 was purified from A431 cell-conditioned media based on its capacity to bind to FGF-1 and FGF-2. We isolated and established HBp17/FGFBP-1-knockout (KO)-A431 and KO-HO-1-N-1 cell lines using the clusters of regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) gene editing technology. The amount of FGF-2 secreted into conditioned medium decreased for A431-HBp17-KO and HO-1-N-1-HBp17-KO cells compared to their WT counterparts. Functional assessment showed that HBp17/FGFBP-1 KO inhibited cell proliferation, colony formation, and cell motility in vitro. It also inhibited tumor growth in vivo compared to controls, which confirmed the significant difference in growth in vitro between HBp17-KO cells and wild-type (WT) cells, indicating that HBp17/FGFBP-1 is a potent therapeutic target in squamous cell carcinomas (SCC) and oral squamous cell carcinomas (OSCC). In addition, complementary DNA/protein expression analysis followed by Gene Ontology and protein-protein interaction (PPI) analysis using the Database for Visualization and Integrated Discovery and Search Tool for the Retrieval of Interacting Genes/Proteins showed that both gene and protein expression related to epidermal development, cornification, and keratinization were upregulated in A431-HBp17-KO and HO-1-N-1-KO cells. This is the first discovery of a novel role of HBp17/FGFBP-1 that regulates SCC and OSCC cell differentiation.

11.
Development ; 147(16)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32747434

RESUMO

Central nervous system (CNS) blood vessels contain a functional blood-brain barrier (BBB) that is necessary for neuronal survival and activity. Although Wnt/ß-catenin signaling is essential for BBB development, its downstream targets within the neurovasculature remain poorly understood. To identify targets of Wnt/ß-catenin signaling underlying BBB maturation, we performed a microarray analysis that identified Fgfbp1 as a novel Wnt/ß-catenin-regulated gene in mouse brain endothelial cells (mBECs). Fgfbp1 is expressed in the CNS endothelium and secreted into the vascular basement membrane during BBB formation. Endothelial genetic ablation of Fgfbp1 results in transient hypervascularization but delays BBB maturation in specific CNS regions, as evidenced by both upregulation of Plvap and increased tracer leakage across the neurovasculature due to reduced Wnt/ß-catenin activity. In addition, collagen IV deposition in the vascular basement membrane is reduced in mutant mice, leading to defective endothelial cell-pericyte interactions. Fgfbp1 is required cell-autonomously in mBECs to concentrate Wnt ligands near cell junctions and promote maturation of their barrier properties in vitro Thus, Fgfbp1 is a crucial extracellular matrix protein during BBB maturation that regulates cell-cell interactions and Wnt/ß-catenin activity.


Assuntos
Barreira Hematoencefálica/embriologia , Colágeno Tipo IV/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Colágeno Tipo IV/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Pericitos/citologia , Pericitos/metabolismo , beta Catenina/genética
12.
Am J Cancer Res ; 10(2): 662-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195034

RESUMO

Type-2 11ß-hydroxysteroid dehydrogenase (HSD11B2) is a key enzyme which converts cortisol to inactive cortisone and is involved in tumor progression and metastasis. Several studies have shown that the promotion of tumor progression and metastasis by HSD11B2 resulted from its physiological function of inactivating glucocorticoids (GC). However, the underlying molecular mechanisms by which HSD11B2 drives metastasis, in addition to inactivating GC, are still unclear. In our study, a series of in vivo and in vitro assays were performed to determine the function of HSD11B2 and the possible mechanisms underlying its role in CRC metastasis. mRNA transcriptome array analysis was used to identify the possible downstream targets of HSD11B2. We found that the ectopic expression of HSD11B2 significantly promoted the migration, invasion and metastasis of colorectal cancer (CRC) cells both in vitro and in vivo, while it did not affect their proliferation in either case. Mechanically, HSD11B2 appeared to enhance cell migration and invasion by upregulating the expression of fibroblast growth factor binding protein 1 (Fgfbp1), and subsequently increasing the phosphorylation of AKT. Furthermore, AKT activation partially mediated the increased expression of Fgfbp1 induced by HSD11B2. HSD11B2 expression was positively correlated with Fgfbp1 and p-AKT expression in clinical samples of CRC. Additionally, knockdown of either Fgfbp1 or AKT impaired the migration and invasion capability of CRC cells with HSD11B2 overexpression, suggesting that HSD11B2 promoted the migration, invasion and metastasis of CRC cells via the Fgfbp1-AKT pathway. Therefore, targeting HSD11B2 or Fgfbp1 may be a novel treatment strategy for inhibiting the metastasis of CRC.

13.
In Vitro Cell Dev Biol Anim ; 56(3): 222-233, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32185608

RESUMO

Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) was purified from A431 cell-conditioned media based on its capacity to bind to fibroblast growth factor 1 and 2 (FGF-1 and FGF-2). HBp17/FGFBP-1 has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. HBp17/FGFBP-1 is also recognized as a pro-angiogenic molecule as a consequence of its interaction with FGF-2. We have previously reported that Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, downregulated the expression of HBp17/FGFBP-1 and inhibited the proliferation of squamous cell carcinoma (SCC) cells in vitro and in vivo through NF-κb inhibition. To explore the possibility of microRNA (miRNA) control of HBp17/FGFBP-1, we analyzed exosomal miRNAs from medium conditioned by A431 cells treated with ED-71. Microarray analysis revealed that 12 exosomal miRNAs were upregulated in ED-71-treated A431 cells. Among them, miR-6887-5p was identified to have a predicted mRNA target matching the 3' untranslated region (3'-UTR) of HBp17/FGFBP-1. The 3'-UTR of HBp17/FGFBP-1 was confirmed to be a direct target of miR-6887-5p in SCC/OSCC cells, as assessed with a luciferase reporter assay. Functional assessment revealed that overexpression of miR-6887-5p in SCC/OSCC cells inhibited cell proliferation and colony formation in vitro, and inhibited tumor growth in vivo compared with control. In conclusion, our present study supports a novel anti-cancer mechanism involving the regulation of HBp17/FGFBP-1 function by exosomal miR-6887-5p in SCC/OSCC cells, which has potential utility as a miRNA-based cancer therapy.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Exossomos/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Vitamina D/análogos & derivados , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Exossomos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Vitamina D/farmacologia
14.
Am J Cancer Res ; 9(12): 2650-2664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31911852

RESUMO

The secreted fibroblast growth factor (FGF) binding protein (FGF-BP), which is an extracellular chaperone molecule for FGFs, has been demonstrated to enhance the biological and biochemical activities of FGFs and to be closely related to the growth of several cancers. However, the role of FGFBP1 in pancreatic adenocarcinoma (PDAC) has not been studied extensively. We previously reported that decreased FBW7 could induce pancreatic cancer proliferation and progression. In the present study, we investigated whether FBW7 inhibited cell proliferation and metastasis by decreasing the expression of FGFBP1 in pancreatic cancer. We initially confirmed that pancreatic cancer patients with higher FGFBP1 expression had a worse prognosis. Next, we demonstrated that FGFBP1 silencing inhibited the proliferation and metastasis of PANC-1 and Mia PaCa-2 cells. Mechanistically, FGFBP1 was negatively correlated with FBW7 but positively correlated with c-Myc in PDAC tissue samples, and FBW7 regulated FGFBP1 in a c-Myc-dependent manner. We also found that FBW7 silencing could partly reverse the effect of FGFBP1 silencing on proliferation and metastasis. In summary, FGFBP1 is a prognostic marker for overall survival and is required for pancreatic cancer cell proliferation and metastasis, which is mediated by FBW7 in a c-Myc-dependent manner. Thus, targeting the FBW7/c-Myc/FGFBP1 axis might suppress recurrence and metastasis and provide novel treatment strategies for PDAC.

15.
Curr Opin Physiol ; 4: 57-64, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30560223

RESUMO

As the final output of the somatic nervous system, the neuromuscular junction (NMJ) is essential for all voluntary movements. The NMJ is also necessary for connected cells to function and survive. Because of this central role, much effort has been devoted to understanding the effects of aging, diseases, and injuries on the NMJ. These efforts have revealed a close relationship between aberrant changes at NMJs and its three cellular components - the presynaptic site on motor axons, the postsynaptic region on muscle fibers and perisynaptic Schwann cells. Here, we review the morphological and molecular changes associated with aging NMJs in rodents and humans. We also provide an overview of factors with potential roles in maintaining and repairing adult and aged NMJs.

16.
In Vitro Cell Dev Biol Anim ; 53(9): 810-817, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28710602

RESUMO

Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D3, i.e., 1α,25(OH)2D3 (1,25D3), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH)2D3, for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D3. Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the tumor microenvironment.


Assuntos
Calcitriol/análogos & derivados , Carcinoma de Células Escamosas/patologia , Proteínas de Transporte/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Bucais/patologia , Vitamina D/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Nus , Neoplasias Bucais/irrigação sanguínea , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/metabolismo , Transfecção , Vitamina D/farmacologia , Vitamina D/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA