Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Total Environ ; 946: 174298, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944299

RESUMO

Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Suscetibilidade a Doenças
2.
Vet Res Commun ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922387

RESUMO

Fibropapillomatosis (FP) - tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) - is a disease that affect marine turtles around the world, and characterized by the formation of cutaneous tumours that can appear anywhere on the body. We carried out a thorough literature search (from 1990 to 2024) in the feeding sites of North-western Mexico, a region that hosts important habitats for feeding, development, and reproduction for five of the seven existing sea turtle species. We found 18 reports recording a total of 32 cases of FP and/or ChHV5/Scutavirus chelonidalpha5 in coastal and insular areas of North-western Mexico. Baja California Sur resulted with the highest number of cases (75%). While the first case of ChHV5/Scutavirus chelonidalpha5 infection was reported in 2004, the presence of FP tumours was reported in 2014 and became more frequent between 2019 and 2024. The affected species were black, Chelonia mydas (50%), olive ridley, Lepidochelys olivacea (46.8%) and loggerhead turtles, Caretta caretta (3.2%). Tumours occurred mainly in anterior flippers (46.1%) and neck (22.5%), and most had a nodular and verrucous appearance with a rough surface. In the study region, there is a potential sign of the emergence of the ChHV5/Scutavirus chelonidalpha5 infections and FP disease during the last 20 years, with a rapid increase during the last 10 years. As long as infections by ChHV5/Scutavirus chelonidalpha5 and the prevalence of the FP disease may be potentially influenced by anthropogenic activities, a One Health approach is needed to understand and improve sea turtles' health.

3.
Vet Sci ; 10(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505827

RESUMO

Fibropapillomatosis (FP) is a neoplastic disease most often found in green turtles (Chelonia mydas). Afflicted turtles are burdened with potentially debilitating tumors concentrated externally on the soft tissues, plastron, and eyes and internally on the lungs, kidneys, and the heart. Clinical signs occur at various levels, ranging from mild disease to severe debilitation. Tumors can both progress and regress in affected turtles, with outcomes ranging from death due to the disease to complete regression. Since its official description in the scientific literature in 1938, tumor growth rates have been rarely documented. In addition, FP tumors come in two very different morphologies; yet, to our knowledge, there have been no quantified differences in growth rates between tumor types. FP tumors are often rugose in texture, with a polypoid to papillomatous morphology, and may or may not be pedunculated. In other cases, tumors are smooth, with a skin-like surface texture and little to no papillose structures. In our study, we assessed growth-rate differences between rugose and smooth tumor morphologies in a rehabilitation setting. We measured average biweekly tumor growth over time in green turtles undergoing rehabilitation at the University of Florida Whitney Laboratory Sea Turtle Hospital in St. Augustine, Florida, and compared growth between rugose and smooth tumors. Our results demonstrate that both rugose and smooth tumors follow a similar active growth progression pattern, but rugose tumors grew at significantly faster rates (p = 0.013) than smooth ones. We also documented regression across several examined tumors, ranging from -0.19% up to -10.8% average biweekly negative growth. Our study offers a first-ever assessment of differential growth between tumor morphologies and an additional diagnostic feature that may lead to a more comprehensive understanding and treatment of the disease. We support the importance of tumor morphological categorization (rugose versus smooth) being documented in future FP hospital- and field-based health assessments.

4.
Mar Biol ; 170(7): 83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251697

RESUMO

Sea turtles spend most of their life cycle in foraging grounds. Research in developmental habitats is crucial to understanding individual dynamics and to support conservation strategies. One approach to gather information in foraging grounds is the use of cost-effective and non-invasive techniques that allow public participation. The present study aimed to use photographic-identification (photo-ID) to investigate the spatio-temporal distribution of Chelonia mydas and Eretmochelys imbricata. Furthermore, we describe fibropapillomatosis occurrence. This work was carried out at subtropical rocky reefs of the Brazilian coast in Arraial do Cabo (22°57'S, 42°01'W), within a sustainable conservation unit. A total of 641 images were obtained through social media screening (n = 447), citizen science (n = 168), or intentional capture (n = 26) dated between 2006 and 2021. Additionally, 19 diving forms (between 2019 and 2021) were received from citizen scientists. All diving forms presented at least one turtle. Photo-ID identified 174 individuals of C. mydas, with 45 being resighted, while E. imbricata had 32 individuals, with 7 individuals resighted. The median interval between the first and last individual sighting was 1.7 years for C. mydas and 2.4 years for E. imbricata. Fibropapillomatosis was only observed in C. mydas, with a prevalence of 13.99% (20 of 143 individuals) and regression in 2 individuals (10.00%). Our results indicated that Arraial do Cabo is an important development area with individuals residing for at least 6 years. This study demonstrated that social media, along with photo-ID, can be useful to provide sea turtle estimates in a foraging ground using a non-invasive, low-cost method. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04226-z.

5.
Animals (Basel) ; 13(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36830343

RESUMO

The immune system of sea turtles is not completely understood. Sea turtles (as reptiles) bridge a unique evolutionary gap, being ectothermic vertebrates like fish and amphibians and amniotes like birds and mammals. Turtles are ectotherms; thus, their immune system is influenced by environmental conditions like temperature and season. We aim to review the turtle immune system and note what studies have investigated sea turtles and the effect of the environment on the immune response. Turtles rely heavily on the nonspecific innate response rather than the specific adaptive response. Turtles' innate immune effectors include antimicrobial peptides, complement, and nonspecific leukocytes. The antiviral defense is understudied in terms of the diversity of pathogen receptors and interferon function. Turtles also mount adaptive responses to pathogens. Lymphoid structures responsible for lymphocyte activation and maturation are either missing in reptiles or function is affected by season. Turtles are a marker of health for their marine environment, and their immune system is commonly dysregulated because of disease or contaminants. Fibropapillomatosis (FP) is a tumorous disease that afflicts sea turtles and is thought to be caused by a virus and an environmental factor. We aim, by exploring the current understanding of the immune system in turtles, to aid the investigation of environmental factors that contribute to the pathogenesis of this disease and provide options for immunotherapy.

6.
Animals (Basel) ; 13(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36670830

RESUMO

Fibropapillomatosis (FP) is a debilitating tumor disease affecting all species of sea turtles globally. The most probable etiological agent for FP is the chelonid herpesvirus 5 (ChHV5). A 2015-2016 field survey of the sea turtles at Mabul Island, Sabah, Malaysia, found three green turtles (Chelonia mydas) with FP tumors. However, the presence of ChHV5 was confirmed in 7.8% (9/115) green turtles and was absent (0/16) in the hawksbill (Eretmochelys imbricata) turtles, as determined through molecular approaches. Subsequent to this, we managed to conduct field sampling of sea turtles in November 2019, just prior to the pandemic lockdown. Here, we aim to determine the extent of ChHV5 infection, and whether the virus has spread to other species of sea turtles around Mabul Island after the first reports of ChHV5 and FP. A total of 69 tissue samples were obtained from green (63), hawksbill (5), and olive ridley (Lepidochelys olivacea) (1) turtles in November 2019. We observed only one green turtle that exhibited FP tumors. To determine the presence of ChHV5, viral DNA was isolated from all the tissue samples, and polymerase chain reaction (PCR) analysis targeting three highly conserved regions of the virus, i.e., the capsid protein gene, glycoprotein H gene, and glycoprotein B gene, was performed. Out of 63 green turtles, 27 were positive for the presence of the virus. The prevalence of ChHV5 in the green turtles showed an increase of 42.9% as compared to the previous sampling conducted in 2015-2016. Additionally, for the first time, three out of the five hawksbill turtles, and one olive ridley turtle, were also PCR-positive for the virus. In conclusion, this study reveals that there has been an increase in ChHV5 infection among turtles in Mabul Island over the last 3 years. ChHV5 should be considered a potential threat, and mitigation efforts should be taken to prevent the spread of infection among the endangered sea turtles of Mabul Island and surrounding islands within the Coral Triangle.

7.
J Comp Physiol B ; 192(6): 751-764, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934736

RESUMO

The ability of sea turtle hatchlings to survive into adulthood is related, in part, to their individual health status. Documenting a variety of health data is essential for assessing individual and population health. In this study, we report health indices for 297 green sea turtle (Chelonia mydas) hatchlings that emerged from 32 nests deposited on Juno Beach, Florida, USA in June-July, 2017. Results of physical examination, morphometrics, and infectious disease testing (chelonid alphaherpesvirus 5, ChHV5), and blood analyte reference intervals (hematology, plasma protein, glucose) are presented. Carapacial scute abnormalities were observed in 36% (108/297) of all hatchlings, including abnormal vertebral (86/297, 29%), lateral (72/297, 24%), and both vertebral and lateral (50/297, 17%) scutes. Hatchlings from nests laid in July, which was ~ 1.6 °C warmer than June, had significantly shorter incubation periods, and higher body mass, straight carapace length, body condition index, packed cell volume, and heterophil:lymphocyte ratios compared to hatchlings from nests laid in June. These results suggest that incubation temperatures are linked to hatchling developmental factors and size, nutritional and/or hydration status, and/or blood cell dynamics. Blood samples from all 297 hatchlings tested negative for ChHV5 DNA via quantitative PCR, including 86 hatchlings from the nests of 11 adult females that tested positive for ChHV5 via qPCR or serology in a separate study, lending support to the hypothesis that ChHV5 is horizontally (rather than vertically) transmitted among green turtles. Information resulting from this study represents a useful dataset for comparison to future health assessment and population monitoring studies of green turtle hatchlings in the northwestern Atlantic Ocean.


Assuntos
Tartarugas , Animais , Feminino , Florida , Glucose , Temperatura , Tartarugas/fisiologia
8.
Dis Aquat Organ ; 149: 133-143, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35735233

RESUMO

Fibropapillomatosis (FP) is a tumor disease that affects all sea turtle species but is mainly seen in green turtles Chelonia mydas. The pathology of FP has been described extensively, but its dynamics in populations over time have been less studied. We analyzed the dynamics of FP in a population of green turtles in Akumal Bay on the central coast of the Mexican Caribbean. A total of 475 green turtles were captured over 15 yr (2004-2018). The highest prevalence of FP was found in the largest turtles, and there was a positive relationship between FP prevalence and size of turtles. FP was first detected in 2008 at a prevalence of 1.6%, and annual prevalence increased markedly from 17.9% in 2015 to 54% by 2018. Likewise, severity of FP increased over time, with most turtles falling into moderately to severely diseased categories (tumor score 2). The average size of turtles with FP was significantly larger than the size of individuals without FP. Regression of tumors was seen in 21% of turtles, tumor score was higher in smaller individuals, and only tumor score 2 was present in the largest sea turtles. An increase in the prevalence and tumor score of FP coincided with the massive arrival of Sargassum in 2015, suggesting that altered environmental conditions may have played a role. The increased prevalence of FP in Akumal Bay prompts the need to explain what might be driving this phenomenon and how widespread it is in the Caribbean.


Assuntos
Papiloma , Neoplasias Cutâneas , Tartarugas , Animais , Baías , México/epidemiologia , Papiloma/epidemiologia , Papiloma/veterinária , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/veterinária
9.
R Soc Open Sci ; 9(2): 211190, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154791

RESUMO

Characterizing polymorphism at the major histocompatibility complex (MHC) genes is key to understanding the vertebrate immune response to disease. Despite being globally afflicted by the infectious tumour disease fibropapillomatosis (FP), immunogenetic variation in sea turtles is minimally explored. We sequenced the α 1 peptide-binding region of MHC class I genes (162 bp) from 268 juvenile green (Chelonia mydas) and 88 loggerhead (Caretta caretta) sea turtles in Florida, USA. We recovered extensive variation (116 alleles) and trans-species polymorphism. Supertyping analysis uncovered three functional MHC supertypes corresponding to the three well-supported clades in the phylogeny. We found significant evidence of positive selection at seven amino acid sites in the class I exon. Random forest modelling and risk ratio analysis of Ch. mydas alleles uncovered one allele weakly associated with smooth FP tumour texture, which may be associated with disease outcome. Our study represents the first characterization of MHC class I diversity in Ch. mydas and the largest sample of sea turtles used to date in any study of adaptive genetic variation, revealing tremendous genetic variation and high adaptive potential to viral pathogen threats. The novel associations we identified between MHC diversity and FP outcomes in sea turtles further highlight the importance of evaluating genetic predictors of disease, including MHC and other functional markers.

10.
J Vet Med Sci ; 83(12): 1852-1854, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34732611

RESUMO

A male Holstein-Friesian calf was born with multiple, cauliflower-like, pale pink cutaneous masses on the head and limbs. On histopathological examination, the cutaneous masses were diagnosed as congenital cutaneous fibropapillomatosis. Those lesions involved focal proliferation of sebaceous gland in the dermis. There were no histological findings to suggest bovine papillomavirus infection, such as the presence of intranuclear inclusion bodies, large keratohyalin granules, and koilocytosis. Furthermore, papillomaviral antigens and DNA were not detected by immunohistochemistry and polymerase chain reaction, respectively. These results suggested that there was no association between these cutaneous lesions and bovine papillomavirus infection, and the lesions were considered as harmartomatous changes.


Assuntos
Infecções por Papillomavirus , Animais , Imuno-Histoquímica , Masculino , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Reação em Cadeia da Polimerase/veterinária , Pele
11.
Pathogens ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34832560

RESUMO

Fibropapillomatosis (FP) of sea turtles is characterised by cutaneous tumours and is associated with Chelonid herpesvirus 5 (ChHV5), an alphaherpesvirus from the family Herpesviridae. Here, we provide the first evidence of ChHV5-associated FP in endangered Green turtles (Chelonia mydas) from Sabah, which is located at the northern region of Malaysian Borneo. The aims of our study were firstly, to determine the presence of ChHV5 in both tumour exhibiting and tumour-free turtles using molecular techniques and secondly, to determine the phylogeography of ChHV5 in Sabah. We also aim to provide evidence of ChHV5 infection through histopathological examinations. A total of 115 Green turtles were sampled from Mabul Island, Sabah. We observed three Green turtles that exhibited FP tumours and were positive for ChHV5. In addition, six clinically healthy turtles (with no presence of tumours) were also positive for the virus based on Polymerase Chain Reaction of three viral genes (Capsid protein gene UL18, Glycoprotein H gene UL22, and Glycoprotein B gene UL27). The prevalence of the ChHV5 was 5.22% in asymptomatic Green turtles. Epidermal intranuclear inclusions were identified in tumour lesions upon histopathological examination. In addition, phylogenetic analyses of the UL18, UL22, UL27, and UL30 gene sequences showed a worldwide distribution of the ChHV5 strain with no clear distinction based on geographical location suggesting an interoceanic connection and movement of the sea turtles. Thus, the emergence of ChHV5 in Green turtles in the waters of Sabah could indicate a possible threat to sea turtle populations in the future and requires further monitoring of the populations along the Bornean coast.

12.
Wellcome Open Res ; 6: 219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34622016

RESUMO

Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( Chelonia mydas) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish (Carassius auratus), suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology.

13.
Animals (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573455

RESUMO

The spreading global sea turtle fibropapillomatosis (FP) epizootic is threatening some of Earth's ancient reptiles, adding to the plethora of threats faced by these keystone species. Understanding this neoplastic disease and its likely aetiological pathogen, chelonid alphaherpesvirus 5 (ChHV5), is crucial to understand how the disease impacts sea turtle populations and species and the future trajectory of disease incidence. We generated 20 ChHV5 genomes, from three sea turtle species, to better understand the viral variant diversity and gene evolution of this oncogenic virus. We revealed previously underappreciated genetic diversity within this virus (with an average of 2035 single nucleotide polymorphisms (SNPs), 1.54% of the ChHV5 genome) and identified genes under the strongest evolutionary pressure. Furthermore, we investigated the phylogeny of ChHV5 at both genome and gene level, confirming the propensity of the virus to be interspecific, with related variants able to infect multiple sea turtle species. Finally, we revealed unexpected intra-host diversity, with up to 0.15% of the viral genome varying between ChHV5 genomes isolated from different tumours concurrently arising within the same individual. These findings offer important insights into ChHV5 biology and provide genomic resources for this oncogenic virus.

14.
J Wildl Dis ; 57(4): 761-772, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34460917

RESUMO

There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.


Assuntos
Neoplasias Cutâneas , Tartarugas , Animais , Ecossistema , Imunidade , Prevalência , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/veterinária
15.
Ecohealth ; 18(2): 229-240, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241724

RESUMO

Fibropapillomatosis (FP) is a tumorigenic panzootic disease of sea turtles, most common in green turtles (Chelonia mydas). FP is linked to the chelonid alphaherpesvirus 5 (ChAHV5) and to degraded habitats and, though benign, large tumours can hinder vital functions, causing death. We analyse 108 green turtles, captured in 2018 and 2019, at key foraging grounds in Guinea-Bissau and Mauritania, West Africa, for the presence of FP, and use real-time PCR to detect ChAHV5 DNA, in 76 individuals. The prevalence of FP was moderate; 33% in Guinea-Bissau (n = 36) and 28% in Mauritania (n = 72), and most turtles were mildly affected, possibly due to low human impact at study locations. Juveniles had higher FP prevalence (35%, n = 82) compared to subadults (5%, n = 21), probably because individuals acquire resistance over time. ChAHV5 DNA was detected in 83% (n = 24) of the tumour biopsies, consistent with its role as aetiological agent of FP and in 26% (n = 27) of the 'normal' skin (not showing lesions) from FP turtles. Notably, 45% of the asymptomatic turtles were positive for ChAHV5, supporting multifactorial disease expression. We report the first baselines of FP and ChAHV5 prevalence for West Africa green turtles, essential to assess evolution of disease and future impacts of anthropogenic activities.


Assuntos
Alphaherpesvirinae/patogenicidade , Infecções por Herpesviridae/veterinária , Neoplasias Cutâneas/veterinária , Tartarugas/virologia , África Ocidental/epidemiologia , Alphaherpesvirinae/isolamento & purificação , Animais , DNA Viral/isolamento & purificação , Infecções por Herpesviridae/epidemiologia , Prevalência , Neoplasias Cutâneas/epidemiologia
16.
Gene ; 800: 145800, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34175400

RESUMO

Emerging infectious diseases are a major threat to biodiversity in the 21st century. Fibropapillomatosis (FP) is an epithelial tumor disease that affects immature and adult marine turtles worldwide, particularly green turtles (Chelonia mydas). We know little about the host factors contributing to FP susceptibility, in part because transcriptomic studies that compare transcript expression in turtles with and without FP are lacking. Here, we performed RNA-Seq on healthy skin tissue from immature C. mydas in the Indian River Lagoon, Florida, USA, comparing turtles (1) with and without FP and (2) with and without leech parasites, a putative vector of FP. We assembled a de novo C. mydas skin transcriptome to identify transcripts with significant differential expression (DE) across FP and leech categories. Significant DE transcripts were found across FP and leech comparisons, including 10 of the same transcripts with DE across both comparisons. Leech-positive individuals significantly upregulated different immune and viral interaction transcripts than did leech-negative individuals, including viral interaction transcripts associated with herpesvirus interactions. This finding strengthens the role of marine leeches as mechanical vectors of Chelonid herpesvirus 5 (ChHV5) which has been implicated as a causative agent of FP. FP-positive turtles upregulated several tumor progression and suppression transcripts relative to FP-negative turtles, which had no significant DE tumor progression transcripts. FP-positive turtles also upregulated significantly more protein interaction transcripts than FP-negative turtles. DE transcripts across leech comparisons showed no functional enrichment, whereas DE transcripts across FP comparisons showed some GO terms were enriched in FP-positive and FP negative turtles. Notably, only FP-negative turtles were enriched for GO terms involved in acquired and inflammatory immune gene regulation. Overall, our DE transcripts included several candidate genes that may play important roles in C. mydas resistance to or recovery from FP, highlighting that transcriptomics provides a promising venue to understand this impactful disease. Continued investigation of C. mydas responses to FP and leech affliction is imperative for species persistence and the conservation of marine ecosystems worldwide due to the essential role of sea turtles in ecosystem function and stability.


Assuntos
Neoplasias Cutâneas/veterinária , Tartarugas/genética , Tartarugas/parasitologia , Animais , Florida , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Sanguessugas/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma , Tartarugas/imunologia , Tartarugas/virologia
17.
Animals (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064092

RESUMO

Chelonid alphaherpesvirus 5 (ChHV5) is strongly associated with fibropapillomatosis, a neoplastic disease of sea turtles that can result in debilitation and mortality. The objectives of this study were to examine green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and leatherback (Dermochelys coriacea) sea turtles in Grenada, West Indies, for fibropapillomatosis and to utilize ChHV5-specific PCR, degenerate herpesvirus PCR, and serology to non-invasively evaluate the prevalence of ChHV5 infection and exposure. One-hundred and sixty-seven turtles examined from 2017 to 2019 demonstrated no external fibropapilloma-like lesions and no amplification of ChHV5 DNA from whole blood or skin biopsies. An ELISA performed on serum detected ChHV5-specific IgY in 18/52 (34.6%) of green turtles tested. In 2020, an adult, female green turtle presented for necropsy from the inshore waters of Grenada with severe emaciation and cutaneous fibropapillomas. Multiple tumors tested positive for ChHV5 by qPCR, providing the first confirmed case of ChHV5-associated fibropapillomatosis in Grenada. These results indicate that active ChHV5 infection is rare, although viral exposure in green sea turtles is relatively high. The impact of fibropapillomatosis in Grenada is suggested to be low at the present time and further studies comparing host genetics and immunologic factors, as well as examination into extrinsic factors that may influence disease, are warranted.

18.
Front Vet Sci ; 8: 642894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026888

RESUMO

Since the 1970s, several species of herpesviruses have been identified and associated with significant diseases in reptiles. Earlier discoveries placed these viruses into different taxonomic groups on the basis of morphological and biological characteristics, while advancements in molecular methods have led to more recent descriptions of novel reptilian herpesviruses, as well as providing insight into the phylogenetic relationship of these viruses. Herpesvirus infections in reptiles are often characterised by non-pathognomonic signs including stomatitis, encephalitis, conjunctivitis, hepatitis and proliferative lesions. With the exception of fibropapillomatosis in marine turtles, the absence of specific clinical signs has fostered misdiagnosis and underreporting of the actual disease burden in reptilian populations and hampered potential investigations that could lead to the effective control of these diseases. In addition, complex life histories, sampling bias and poor monitoring systems have limited the assessment of the impact of herpesvirus infections in wild populations and captive collections. Here we review the current published knowledge of the taxonomy, pathogenesis, pathology and epidemiology of reptilian herpesviruses.

19.
Animals (Basel) ; 11(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807588

RESUMO

Characterised by benign tumours, fibropapillomatosis (FP) is a debilitating disease that predominantly afflicts the endangered green turtle (Chelonia mydas). A growing body of histological and molecular evidence has associated FP tumours with Chelonid alphaherpesvirus 5 (ChHV5). However, a recent study which detected both ChHV5 and Chelonia mydas papillomavirus 1 (CmPV1) DNA in FP tumour tissues has challenged this hypothesis. The present study aimed to establish a probe-based qPCR to assess the wider prevalence of CmPV1 and co-occurrence with ChHV5 in 275 marine turtles foraging in waters adjacent to the east coast of Queensland, Australia: three categories: Group A (FP tumours), Group B (non-tumoured skin from FP turtles) and Group C (non-tumoured skin from turtles without FP). Concurrent detection of ChHV5 and CmPV1 DNA is reported for all three categories, where Group A had the highest rate (43.5%). ChHV5 viral loads in Group A were significantly higher than loads seen in Group B and C. This was not the case for CmPV1 where the loads in Group B were highest, followed by Group A. However, the mean CmPV1 load for Group A samples was not significantly different to the mean load reported from Group B or C samples. Collectively, these results pivot the way we think about FP; as an infectious disease where two separate viruses may be at play.

20.
Front Immunol ; 12: 630988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717164

RESUMO

Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.


Assuntos
Perfilação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Transcriptoma , Infecções Tumorais por Vírus/veterinária , Tartarugas/virologia , Fatores Etários , Animais , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Texas/epidemiologia , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA