Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543406

RESUMO

Water security and industrial wastewater treatment are significant global concerns. One of the main issues with environmental contamination has been the discharge of dye wastewater from the textile and dye industries, contributing to an ever-growing problem with water pollution, poisoning water supplies, and harming the ecosystem. The traditional approach to wastewater treatment has been found to be inefficient, and biosorption techniques and mechanisms have been proven to be a successful replacement for conventional methods. Recent developments have led to the recognition of fibrous materials as an environmentally friendly option with broad application in several industries, including wastewater treatment. This review explores the potential of fibrous materials produced by the electrospinning technique as adsorbents for wastewater treatment, while at the same time, for the removal of adsorbates such as oil, dyes, heavy metals, and other substances, as reported in the literature. Textile wastewater filtering structures, produced by electrospinning, are summarized and the use of synthetic and natural polymers for this purpose is discussed. The limitations of electrospun textile wastewater filtering structures are also mentioned. Electrospun nanofibrous membranes appear to be a very promising route to filter textile wastewater and therefore contribute to water reuse and to reducing the contamination of water courses.

2.
Acta Biomater ; 177: 265-277, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336270

RESUMO

Fibrin clot is a vital class of fibrous materials, governing the mechanical response of blood clots. Fracture behavior of fibrin clots under complex physiological load is relevant for hemostasis and thrombosis. But how they fracture under cyclic and variable rate loading has not been reported. Here we conduct cyclic fatigue and monotonic variable rate loading tests on fibrin clots to characterize their fracture properties in terms of fatigue threshold and rate-dependent fracture toughness. We demonstrate that the fracture behavior of fibrin clots is sensitive to the amplitude of cyclic load and the loading rate. The cyclic fatigue tests show the fatigue threshold of fibrin clots at 1.66 J/m2, compared to the overall fracture toughness 15.8 J/m2. Furthermore, we rationalize the fatigue threshold using a semi-empirical model parameterized by 3D morphometric quantification to account for the hierarchical molecular structure of fibrin fibers. The variable loading tests reveal rate dependence of the overall fracture toughness of fibrin clots. Our analysis with a viscoelastic fracture model suggests the viscoelastic origin of the rate-dependent fracture toughness. The toughening mechanism of fibrin clots is further compared with biological tissues and hydrogels. This study advances the understanding and modeling of fatigue and fracture of blood clots and would motivate further investigation on the mechanics of fibrous materials. STATEMENT OF SIGNIFICANCE: Fibrin clot is a soft fibrous gel, exhibiting nonlinear mechanical responses under complex physiological loads. It is the main load-bearing constituent of blood clots where red blood cells, platelets and other cells are trapped. How the fibrin clot fractures under complex mechanical loads is critical for hemostasis and thrombosis. We study the fracture behavior of fibrin clots under cyclic fatigue and monotonic variable rate loads. We characterize the fatigue-threshold and viscous energy dissipation of fibrin clots. We compare the toughness enhancement of fibrin clots with hydrogels. The findings offer new insights into the fatigue and fracture of blood clots and fibrous materials, which could improve design guidelines for bioengineered materials.


Assuntos
Fibrina , Trombose , Humanos , Fibrina/química , Hemostasia , Plaquetas , Hidrogéis
3.
J Synchrotron Radiat ; 31(Pt 2): 363-377, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386565

RESUMO

The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.

4.
Chemphyschem ; 24(19): e202300234, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37428636

RESUMO

Phase change materials (PCMs) textiles have been developed for personal thermal management (PTM) while limited loading amount of PCMs in textiles reduced thermal buffering effect. In this work, we proposed a sandwich fibrous encapsulation to store polyethylene glycol (PEG) with PEG loading amount of 45 wt %, which consisted of polyester (PET) fabrics with hydrophobic coating as protection layers, polyurethane (PU) nanofibrous membranes as barrier layers and PEG-loaded viscose fabric as a PCM-loaded layer. The leakage was totally avoided by controlling weak interfacial adhesion between protection layer and melting PEG. The sandwich fibrous PEG encapsulations had an overall melting enthalpy value ranging from 50 J/g to 78 J/g and melting points ranging from 20 °C to 63 °C by using different PEGs. Besides, introduction of Fe microparticles in PCM-loaded layer enhanced thermal energy storage efficiency. We believe that the sandwich fibrous PEG encapsulation has a great potential in various fields.

5.
J Biomed Mater Res A ; 111(6): 778-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36594559

RESUMO

Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials, where such materials are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Polímeros/química , Tendões , Campos Magnéticos , Poliésteres/química
6.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677989

RESUMO

The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.

7.
J Mech Phys Solids ; 1722023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36582492

RESUMO

Many materials have a network of fibers as their main structural component and are referred to as network materials. Their strength and toughness are important in both engineering and biology. In this work we consider stochastic model fiber networks without pre-existing cracks and study their rupture mechanism. These materials soften as the crosslinks or fibers fail and exhibit either brittle failure immediately after the peak stress, or a more gradual, ductile rupture in the post peak regime. We observe that ductile failure takes place at constant energy release rate defined in the absence of pre-existing cracks as the strain derivative of the specific energy released. The network parameters controlling the energy release rate are identified and discussed in relation to the Lake-Thomas theory which applies to crack growth situations. We also observe a ductile to brittle failure transition as the network becomes more affine and relate the embrittlement to the reduction of mechanical heterogeneity of the network. Further, we confirm previous reports that the network strength scales linearly with the bond strength and with the crosslink density. The present results extend the Lake-Thomas theory to networks without pre-existing cracks which fail by the gradual accumulation of distributed damage and contribute to the development of a physical picture of failure in stochastic network materials.

8.
Materials (Basel) ; 15(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744382

RESUMO

Embossing is a converting process in which the surface of a tissue paper sheet is changed under high pressure, allowing different functions. In this work, the authors intend to study how the embossing pressure affects the main properties of tissue paper, using a laboratory embossing system. An optimum pressure was achieved at 2.8 bar to this embossing laboratory set-up. The effect of pressure when densifying the paper sheet gives it a gain in mechanical strength but no differences in terms of liquid absorbency. The two embossing patterns present different behaviors but both evidence losses in mechanical and softness properties. On the other hand, the finite element method (FEM) does not show clear evidence of how the pressure affects the paper strength. For the deco die, it is possible to observe that the amount of yielding is slightly higher for lower pressure (2.4 bar), but this plasticity state parameter is very similar for 2.8 bar and 3.2 bar. For the micro die, FEM simulations of the manufacturing pressure do not show a considerable impact on the amount of plasticity state of the material; only for 3.2 bar, it shows a change in the pattern of the plasticity state of the paper during the embossing processes. In the end, to achieve a final product with excellent quality, it is important to make a compromise between the various properties.

9.
J Microsc ; 286(3): 220-239, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35244940

RESUMO

Modelling the physical behaviour of fibrous materials still remains a great challenge because it requires to evaluate the inner structure of the different phases at the phase scale (fibre or matrix) and the at constituent scale (fibre). X-ray computed tomography (CT) imaging can help to characterize and to model these structures, since it allows separating the phases, based on the grey level of CT scans. However, once the fibrous phase has been isolated, automatically separating the fibres from each other is still very challenging. This work aims at proposing a method which allows separating the fibres and localizing the fibre-fibre contacts for various fibres geometries, that is: straight or woven fibres, with circular or non-circular cross sections, in a way that is independent of the fibres orientations. This method uses the local orientation of the structure formed by the fibrous phase and then introduces the misorientation angle. The threshold of this angle is the only parameter required to separate the fibres. This paper investigates the efficiency of the proposed algorithm in various conditions, for instance by changing the image resolution or the fibre tortuosity on synthetic images. Finally, the proposed algorithm is applied to real images or samples made up of synthetic solid fibres.

10.
J Funct Biomater ; 13(1)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323223

RESUMO

The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl). The structure of these new materials was investigated by methods such as optical and scanning electron microscopy, X-ray diffraction analysis, Electron paramagnetic resonance method, and Differential scanning calorimetry. The properties of the electrospun materials were analyzed by mechanical and biological tests, and the wetting contact angle was measured. In this work, it was found that even small concentrations of porphyrin can increase the antimicrobial properties by 12 times, improve the physical and mechanical properties by at least 3.5 times, and vary hydrophobicity by at least 5%. At the same time, additives similar in the structure had an oppositely directed effect on the supramolecular structure, the composition of the crystalline, and the amorphous phases. The article considers assumptions about the nature of such differences due to the influence of Hmi and Fe(TPP)Cl) on the macromolecular and fibrous structure of PHB.

11.
Chemosphere ; 293: 133632, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35033516

RESUMO

Steel wool (SW) has a broad-spectrum of applicability, particularly as abrasives, cleaning household utensils and surfaces in general. However, when present in the natural environment, they can be ingested by animals, such as birds, and may represent a risk to the survival of individuals. Accordingly, in this study, we attempted the hypothesis that the ingestion of SW microfibers (SWMs) by Gallus gallus domesticus chicks (model system used) alters growth/development, induces redox imbalance and cholinesterasic effect, as well as promotes iron overload in different organs. For this, the animals received SWMs twice (within a 24-h interval) in an amount corresponding to 12% of their total stomach volume. At the end of the experiment, we observed less weight gain and less head growth, increased production of hydrogen peroxide (in the brain, liver, crop, and gizzard), nitrite (liver, crop, proventriculus and gizzard), malondialdehyde (brain, liver, muscle, proventriculus, and gizzard), along with increased superoxide dismutase activity in the liver, muscle and crop of animals exposed to SWMs. Such results were associated with iron overload observed in different organs, especially in liver, crop, and gizzard. Furthermore, we evidenced an anti-cholinesterasic effect in birds that ingested the SWMs, marked by a reduction in the acetylcholinesterase activity (in brain). Thus, our study sheds light on the (eco)toxicological potential of SWMs in avifauna, conceding us to associate their ingestion (despite ephemeral and occasional) with damage to the health of individuals, requiring a greater attention spotted to disposal of these materials in ecosystems.


Assuntos
Sobrecarga de Ferro , Acetilcolinesterase , Animais , Galinhas/fisiologia , Ecossistema , Aço
12.
Polymers (Basel) ; 13(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34833324

RESUMO

The creation of innovative fibrous materials based on biodegradable semicrystalline polymers and modifying additives is an urgent scientific problem. In particular, the development of biomedical materials based on molecular complexes and biopolymers with controlled properties is of great interest. The paper suggests an approach to modifying the structure and properties of the composite materials based on poly(3-hydroxybutyrate) (PHB) obtained by the electrospinning method using molecular complexes of hemin. The introduction of 1-5 wt. % of hemin has a significant effect on the supramolecular structure, morphology and properties of PHB-based fibers. Changes in the supramolecular structure intensified with the increasing hemin concentration. On the one hand, a decrease in the fraction of the crystalline phase by 8-10% was observed. At the same time, there is a decrease in the density of the amorphous phase by 15-70%. Moreover, the addition of hemin leads to an improvement in the strength characteristics of the material: the elongation at break increased by 1.5 times, and in the tensile strength, it increased by 3 times. The antimicrobial activity of the hemin-containing composite materials against Escherichia coli and Staphylococcus aureus was confirmed. The obtained materials are proposed to be used in the creation of composite systems for regenerative medicine.

13.
Food Chem ; 364: 130329, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175614

RESUMO

The combination of fiber and hydrogel in a system can provide substantial benefits for both components, including the development of three-dimensional structures for the fiber, followed by modifications in the rheological and mechanical properties of the hydrogel. Despite a large increase in the use of fiber-hydrogel composites (FHCs) in various sciences and industries such as biomedicine, tissue engineering, cosmetics, automotive, textile, and agriculture, there is limited information about FHCs in the realm of food application. In this regard, this study reviews the mechanism of FHCs. The force transmission between fiber and hydrogel, which depends on the interactions between them during loading, is the main reason to enhance the mechanical properties of FHCs. Moreover, articles about such FHCs that have the potential for foods or food industries have been described. Additionally, the information gaps about edible FHCs were highlighted for further research. Finally, the methods of fiber formation have been summarized.


Assuntos
Hidrogéis , Engenharia Tecidual , Fenômenos Mecânicos
14.
SN Appl Sci ; 3(2): 192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33521561

RESUMO

ABSTRACT: Foam-forming has in the past predominantly been used to create two-dimensional sheet-like fibrous materials. Allowing the foam to drain freely and decay under gravity, rather than applying a vacuum to remove it rapidly, we can produce lightweight three-dimensional fibrous structures from cellulose fibres, of potential use for thermal and acoustic insulation. µ CT scanning of the fibrous materials enable us to determine both void size distributions and also distributions of fibre orientations. Through image analysis and uniaxial compression testing, we find that the orientation of the fibres, rather than the size of the voids, determine the compressive strength of the material. The fibrous samples display a layering of the fibres perpendicular to the direction of drainage of the precursor liquid foam. This leads to an anisotropy of the compressive behaviour of the samples. Varying the initial liquid fraction of the foam allows for tuning of the compressive strength. We show an increase in over seven times can be achieved for samples of the same density (13 kg.m-3).

15.
Materials (Basel) ; 13(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287190

RESUMO

The paper presents the results of research concerning three fiber materials-mineral wool, hemp fiber and wood wool-as loose-fill thermal insulation materials. The analysis used the material parameters determined in previous works conducted by the authors, such as thermal conductivity and air permeability in relation to bulk density. These materials exhibit open porosity; thus, convection is an essential phenomenon in the heat transfer process. The paper aimed at conducting thermal simulations of various frame wall variants which were filled with the above-mentioned insulation materials. The simulations were performed with the Control Volume Method using the Delphin 5.8 software. The studies accounted for the effect of wind pressure and the time of its influence on a wall insulated by means of fiber material with a thickness of 150 as well as 250 mm. The simulation enabled us to obtain such data as maximal R-value reduction and time to return to equilibrium after filtration for the analyzed materials. The study proved that heat transfer in these insulations strongly depends on the bulk density, thickness of the insulation and wind pressure. The decrease in R is reduced as the density increases. This results from the decreased air permeability characterizing the material. Wind washing causes lower R reduction than air filtration in all models. The greater the thickness, the longer it takes for the models to return to the equilibrium state following air filtration (and wind washing). This period is comparable for air filtration and wind washing. Hemp fibers were characterized with the strongest susceptibility to air filtration; in the case of wood wool, it was also high, but lower than for hemp fibers, while mineral wool was characterized with the lowest.

16.
Int J Solids Struct ; 206: 314-321, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33281220

RESUMO

Materials with a stochastic fiber network as the main structural constituent are broadly encountered in engineering and in biology. These materials are characterized by multiscale heterogeneity and hence their properties evaluated numerically or experimentally are generally dependent on the size of the sample considered. In this work we evaluate the size effect on the linear and non-linear mechanical response of three-dimensional stochastic fiber networks and determine its dependence on material parameters and on the degree of affinity of network deformation. The size effect is more pronounced in non-affine than in affine networks and decreases slowly when the model size increases. In order to eliminate this effect, models lager than can be effectively solved with current computers have to be considered. To address this issue, we propose a method that allows using relatively small models, while accurately predicting the small and large strain behaviors of the network. The method is based on the generalized boundary conditions introduced in (Glüge 2013, Computational Materials Science 79, 408-416), which are being adapted here to the requirements imposed by fibrous materials.

17.
Materials (Basel) ; 13(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171653

RESUMO

Materials based on basalt fiber are widely used as thermal insulating material. These materials have a number of advantages, including their low thermal conductivity and fire resistance due to their natural composition. However, there is a significant drawback in that the material contain non-fibrous inclusions. The solution to this problem would significantly improve the working conditions of workers engaged in the production of materials from basalt fiber, as well as workers engaged in construction and installation works. In addition, the research will help to make completely new products, such as special fireproof paper and sterile medical materials. This article focuses on the reasons for the formation of non-fibrous inclusions in the production of this kind of material. The technology of producing canvases from superthin fiber in the duplex way is studied. The analysis of the production process is made. Certain technological and structural parameters of the influence on the formation of such inclusions are identified. Experiments are carried out and conclusions are drawn given formation of non-fibrous inclusions of various geometric shapes for various factors. A mathematical model of the process under consideration is built. The article draws conclusion on the application of these developments in the production cycle of creating materials based on basalt fiber.

18.
Polymers (Basel) ; 12(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942690

RESUMO

Nowadays, fibrous polyester materials are becoming one of the most important alternatives for controlling reverberation time by absorbing unwanted sound energy in the automobile and construction fields. Thus, it is worthy and meaningful to characterize their acoustic behavior. To do so, non-acoustic parameters, such as tortuosity, viscous and thermal characteristic lengths and thermal permeability, must be determined. Representative panels of polyester fibrous material manufactured by perpendicular laying technology are thus tested via the Bayesian reconstruction procedure. The estimated porosity and airflow resistivity are found in good agreement with those tested via direct measurements. In addition, the homogeneity of polyester fibrous panels was characterized by investigating the mean relative differences of inferred non-acoustic parameters from the direct and reverse orientation measurements. Some parameters, such as tortuosity, porosity and airflow resistivity, exhibit very low relative differences. It is found that most of the panels can be assumed homogeneous along with the panel thickness, the slight inhomogeneity mostly affecting the thermal characteristic length.

19.
Adv Mater ; 32(36): e2002171, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705728

RESUMO

Fibrous materials serve as an intriguing class of 3D materials to meet the growing demands for flexible, foldable, biocompatible, biodegradable, disposable, inexpensive, and wearable sensors and the rising desires for higher sensitivity, greater miniaturization, lower cost, and better wearability. The use of such materials for the creation of a fibrous sensor substrate that interfaces with a sensing film in 3D with the transducing electronics is however difficult by conventional photolithographic methods. Here, a highly effective pathway featuring surface-mediated interconnection (SMI) of metal nanoclusters (NCs) and nanoparticles (NPs) in fibrous materials at ambient conditions is demonstrated for fabricating fibrous sensor substrates or platforms. Bimodally distributed gold-copper alloy NCs and NPs are used as a model system to demonstrate the semiconductive-to-metallic conductivity transition, quantized capacitive charging, and anisotropic conductivity characteristics. Upon coupling SMI of NCs/NPs as electrically conductive microelectrodes and surface-mediated assembly (SMA) of the NCs/NPs as chemically sensitive interfaces, the resulting fibrous chemiresistors function as sensitive and selective sensors for gaseous and vaporous analytes. This new SMI-SMA strategy has significant implications for manufacturing high-performance fibrous platforms to meet the growing demands of the advanced multifunctional sensors and biosensors.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Eletrodos , Propriedades de Superfície
20.
Proc Math Phys Eng Sci ; 476(2244): 20200488, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33408557

RESUMO

The problem of capillary transport in fibrous porous materials at low levels of liquid saturation has been addressed. It has been demonstrated that the process of liquid spreading in this type of porous material at low saturation can be described macroscopically by a similar super-fast, nonlinear diffusion model to that which had been previously identified in experiments and simulations in particulate porous media. The macroscopic diffusion model has been underpinned by simulations using a microscopic network model. The theoretical results have been qualitatively compared with available experimental observations within the witness card technique using persistent liquids. The long-term evolution of the wetting spots was found to be truly universal and fully in line with the mathematical model developed. The result has important repercussions for the witness card technique used in field measurements of the dissemination of various low-volatility agents in imposing severe restrictions on collection and measurement times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA