Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Dev Dyn ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003620

RESUMO

BACKGROUND: The gene cAMP-Responsive Element Binding protein 3-like-1 (CREB3L1) has been implicated in bone development in mice, with CREB3L1 knock-out mice exhibiting fragile bones, and in humans, with CREB3L1 mutations linked to osteogenesis imperfecta. However, the mechanism through which Creb3l1 regulates bone development is not fully understood. RESULTS: To probe the role of Creb3l1 in organismal physiology, we used CRISPR-Cas9 genome editing to generate a Danio rerio (zebrafish) model of Creb3l1 deficiency. In contrast to mammalian phenotypes, the Creb3l1 deficient fish do not display abnormalities in osteogenesis, except for a decrease in the bifurcation pattern of caudal fin. Both, skeletal morphology and overall bone density appear normal in the mutant fish. However, the regeneration of caudal fin postamputation is significantly affected, with decreased overall regenerate and mineralized bone area. Moreover, the mutant fish exhibit a severe patterning defect during regeneration, with a significant decrease in bifurcation complexity of the fin rays and distalization of the bifurcation sites. Analysis of genes implicated in bone development showed aberrant patterning of shha and ptch2 in Creb3l1 deficient fish, linking Creb3l1 with Sonic Hedgehog signaling during fin regeneration. CONCLUSIONS: Our results uncover a novel role for Creb3l1 in regulating tissue growth and patterning during regeneration.

2.
J Ethnopharmacol ; 331: 118272, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710459

RESUMO

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Rehmanniae Radix Praeparata (RRP), a staple in traditional Chinese medicine, is derived from Rehmannia glutinosa Libosch and is renowned for its wound-healing properties. Despite its clinical prevalence, the molecular mechanisms underlying RRP's wound-healing effects have not been fully elucidated. AIM OF THE STUDY: This research endeavored to delineate the molecular and cellular mechanisms underlying the beneficial effects of RRP on wound healing, utilizing a zebrafish model. MATERIALS AND METHODS: Zebrafish larvae at 3 days post-fertilization were amputated at the fin and subsequently treated with RRP. The pro-wound healing and regenerative effects of RRP were evaluated through morphological analysis, assessment of cell proliferation and apoptosis, Additionally, mechanistic insights were gained through a comprehensive approach encompassing network pharmacology analysis, cell tracing, RNA-sequencing, CRISPR/Cas9 gene editing, and pharmacological inhibition. RESULTS: Our findings demonstrate that RRP significantly accelerates caudal fin regeneration in zebrafish following injury by suppressing cell apoptosis, promoting cell proliferation, and upregulating the expression of regenerative-related genes. Furthermore, RRP triggers autophagy signals during the regenerative process, which is attenuated by the autophagy inhibitor chloroquine (CQ). Notably, the administration of RRP enhances the expression of ahr1 and ahr2 in the regenerating fin. Genetic knockout of ahr1a, ahr1b, or ahr2 using CRISPR/Cas9, or pharmacological blockade of AHR signals with the antagonist CH-223191, diminishes the regenerative potential of RRP. Remarkably, zebrafish lacking ahr2 completely lose their fin regeneration ability. Additionally, inhibition of AHR signaling suppresses autophagy signaling during fin regeneration. CONCLUSIONS: This study uncovers that RRP stimulates fin regeneration in zebrafish by inducing AHR signals and, at least partially, activating the autophagy process. These findings provide novel insights into the molecular mechanisms underlying the wound-healing effects of RRP and may pave the way for the development of novel therapeutic strategies.


Assuntos
Nadadeiras de Animais , Autofagia , Proliferação de Células , Receptores de Hidrocarboneto Arílico , Regeneração , Rehmannia , Peixe-Zebra , Animais , Autofagia/efeitos dos fármacos , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Rehmannia/química , Regeneração/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Raízes de Plantas
3.
J Genet Genomics ; 51(9): 947-956, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38621643

RESUMO

Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology. However, existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis. A recently developed method, a substitution mutation-aided lineage-tracing system (SMALT), successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster. Here, we implement the SMALT system in zebrafish, recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos. Leveraging this system, we reconstruct four cell lineage trees for zebrafish fin cells, encompassing both original and regenerated fin. Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%. Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins. Through multiple times sampling germ cells from the same individual, we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors. Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues, providing valuable insights into development and disease in zebrafish.


Assuntos
Linhagem da Célula , Desenvolvimento Embrionário , Mutação , Análise de Célula Única , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Linhagem da Célula/genética , Análise de Célula Única/métodos , Desenvolvimento Embrionário/genética , Mutação/genética , Filogenia , Código de Barras de DNA Taxonômico , Células Germinativas/citologia , Células Germinativas/metabolismo , Embrião não Mamífero/citologia
4.
J Oral Biosci ; 66(2): 381-390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423180

RESUMO

OBJECTIVES: Bone tissue in bony fish demonstrates a remarkable ability to regenerate, particularly evident following induction of extensive bone defects, such as fin amputation. This regenerative capacity has been reported to be promoted by the immunosuppressant FK506, yet its precise effects on bone cells during fin regeneration remains insufficiently elucidated. This study aims to investigate the effects of FK506 treatment on bone morphology, osteoblasts, and osteoclasts in the bony fin rays of osterix promoter-DsRed/TRAP promoter-EGFP double transgenic (Tg) medaka. METHODS: The caudal fin of double Tg medaka was amputated, followed by a 20-day treatment with FK506 (1.0 µg/ml) to observe its effects on fin regeneration. Additionally, the regenerated caudal fin area underwent evaluation using genetic analysis and cell proliferation assays. RESULTS: FK506 treatment significantly increased osterix-positive osteoblast formation, resulting in both a significantly longer fin length and fewer joints in the bony fin rays formed during fin regeneration. Notably, TRAP-positive osteoclast formation and bone resorption were observed to occur primarily during the latter stages of fin regeneration. Furthermore, while the expression levels of osteoblast-related genes in the regenerated area remained unchanged following FK506 treatment, a heightened cell proliferation was observed at the tip of the fin. CONCLUSIONS: Our findings suggest that treatment with FK506 promotes bone regeneration by increasing the number of osteoblasts in the amputated area of the fin. However, long-term treatment disrupts regular bone metabolism by inducing abnormal osteoclast formation.


Assuntos
Nadadeiras de Animais , Animais Geneticamente Modificados , Regeneração Óssea , Oryzias , Tacrolimo , Animais , Tacrolimo/farmacologia , Oryzias/genética , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/fisiologia , Regeneração Óssea/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Imunossupressores/farmacologia
5.
Dev Cell ; 59(5): 676-691.e5, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38290519

RESUMO

Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.


Assuntos
Elementos Silenciadores Transcricionais , Peixe-Zebra , Animais , Peixe-Zebra/genética , Animais Geneticamente Modificados , Regiões Promotoras Genéticas
6.
Bio Protoc ; 13(24): e4908, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38156030

RESUMO

The African killifish Nothobranchius furzeri is an attractive research organism for regeneration- and aging-related studies due to its remarkably short generation time and rapid aging. Dynamic changes in cell proliferation are an essential biological process involved in development, regeneration, and aging. Quantifying the dynamics of cell proliferation in these contexts facilitates the elucidation of the attendant underlying mechanisms. Whole-mount and cryosectioning sample preparation are the preferred approaches to investigate the distribution of cellular structures, cell-cell communication, and spatial gene expression within tissues. Using African killifish caudal fin regeneration as an example, we describe an efficient and detailed protocol to investigate cell proliferation dynamics in both space and time during caudal fin regeneration. The quantification of cell proliferation was achieved through high-resolution immunofluorescence of the proliferation marker Phospho-Histone H3 (H3P). We focused on the characterization of epithelial and mesenchymal proliferation in three-dimensional space at two regeneration time points. Our protocol provides a reliable tool for comparing cell proliferation under different biological contexts. Key features • Elaborates in detail the method used by Wang et al. (2020) to quantify whole-organ mitotic events during tail fin regeneration in vertebrates. • Enables proliferation analysis of millimeter-sized homeostatic and regenerating tissues. • Three-day alternative method to whole mount using cryosections. • Allows automatic quantification using ImageJ macros and R scripts.

7.
Fish Shellfish Immunol ; 142: 109155, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827248

RESUMO

Zebrafish possesses robust caudal fin regeneration which depends on multiple factors to maintain body integrity. However, it is uncertain whether the caudal fin regeneration is related to gut microbiota. Here, we investigated the effect of Lacticaseibacillus rhamnosus GG (LGG) on the regeneration of caudal fin under oxytetracycline (OTC) exposure. The results demonstrated that 1000 µg/L OTC exposure for 4 days decreased reactive oxygen species (ROS) production at 1 and 3 h post amputation (hpa), increased neutrophil recruitment at 6 hpa, enhanced the number of apoptotic cells at 1, 3, 6 and 12 hpa and inhibited Wnt signaling pathway at 48 hpa in wound site. Furthermore, OTC exposure caused dysbacteriosis by elevating level of Proteobacteria and decreasing the abundance of Firmicutes, particularly Lacticaseibacillus, thereby negatively impacting wound healing and repair. Additionally, the administration of 106 CFU/mL of LGG for 48 h could improve intestinal environment through increasing the colonization rate of LGG in OTC-treated larvae intestines. The regenerative process restored by LGG was accompanied with increased ROS production at 1, 3 and 6 hpa, inhibited neutrophil recruitment at 6 hpa, decreased the number of apoptotic cells at 1 hpa, and activated Wnt signaling pathway at 48 hpa in OTC-treated fish. LGG is a promising bacterium for restoring fin regeneration and provides new insights regarding the correlation among the gut microbiota and fin regeneration.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Oxitetraciclina , Probióticos , Animais , Via de Sinalização Wnt , Peixe-Zebra , Lacticaseibacillus , Oxitetraciclina/farmacologia , Espécies Reativas de Oxigênio , Cicatrização
8.
Artigo em Inglês | MEDLINE | ID: mdl-37877156

RESUMO

During the early stages of limb and fin regeneration in aquatic vertebrates (i.e., fishes and amphibians), blastema undergo transcriptional rewiring of innate immune signaling pathways to promote immune cell recruitment. In mammals, a fundamental component of innate immune signaling is the cytosolic DNA sensing pathway, cGAS-STING. However, to what extent the cGAS-STING pathway influences regeneration in aquatic anamniotes is unknown. In jawed vertebrates, negative regulation of cGAS-STING activity is accomplished by suppressors of cytosolic DNA such as Trex1, Pml, and PML-like exon 9 (Plex9) exonucleases. Here, we examine the expression of these suppressors of cGAS-STING, as well as inflammatory genes and cGAS activity during caudal fin and limb regeneration using the spotted gar (Lepisosteus oculatus) and axolotl (Ambystoma mexicanum) model species, and during age-related senescence in zebrafish (Danio rerio). In the regenerative blastema of wounded gar and axolotl, we observe increased inflammatory gene expression, including interferon genes and interleukins 6 and 8. We also observed a decrease in axolotl Trex1 and gar pml expression during the early phases of wound healing which correlates with a dramatic increase in cGAS activity. In contrast, the plex9.1 gene does not change in expression during wound healing in gar. However, we observed decreased expression of plex9.1 in the senescing cardiac tissue of aged zebrafish, where 2'3'-cGAMP levels are elevated. Finally, we demonstrate a similar pattern of Trex1, pml, and plex9.1 gene regulation across species in response to exogenous 2'3'-cGAMP. Thus, during the early stages of limb-fin regeneration, Pml, Trex1, and Plex9.1 exonucleases are downregulated, presumably to allow an evolutionarily ancient cGAS-STING activity to promote inflammation and the recruitment of immune cells.

9.
Hydrobiologia ; 850(10-11): 2257-2273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325486

RESUMO

Variation in fin shape is one of the most prominent features of morphological diversity among fish. Regulation of fin growth has mainly been studied in zebrafish, and it is not clear whether the molecular mechanisms underlying shape variation are equally diverse or rather conserved across species. In the present study, expression levels of 37 candidate genes were tested for association with fin shape in the cichlid fish Lamprologus tigripictilis. The tested genes included members of a fin shape-associated gene regulatory network identified in a previous study and novel candidates selected within this study. Using both intact and regenerating fin tissue, we tested for expression differences between the elongated and the short regions of the spade-shaped caudal fin and identified 20 genes and transcription factors (including angptl5, cd63, csrp1a, cx43, esco2, gbf1, and rbpj), whose expression patterns were consistent with a role in fin growth. Collated with available gene expression data of two other cichlid species, our study not only highlights several genes that were correlated with fin growth in all three species (e.g., angptl5, cd63, cx43, and mmp9), but also reveals species-specific gene expression and correlation patterns, which indicate considerable divergence in the regulatory mechanisms of fin growth across cichlids. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-05068-4.

10.
Front Endocrinol (Lausanne) ; 14: 1122351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334313

RESUMO

As a treatment for various immune-mediated diseases, the use of glucocorticoids as anti-inflammatory and immunosuppressive agents is common practice. However, their use is severely hampered by the risk of the development of adverse effects such as secondary osteoporosis, skin atrophy, and peptic ulcer formation. The exact molecular and cellular mechanisms underlying those adverse effects, which involve most major organ systems, are not yet fully understood. Therefore, their investigation is of great importance to improve treatment regimens for patients. Here, we investigated the effects of the glucocorticoid prednisolone on cell proliferation and Wnt signaling in homeostatic skin and intestinal tissue and compared them to the anti-regenerative effects in zebrafish fin regeneration. We also investigated a potential recovery from the glucocorticoid treatment and the impact of short-term treatment with prednisolone. We identified a dampening effect of prednisolone on Wnt signaling and proliferation in highly proliferative tissues, namely the skin and intestine, as well as reduced fin regenerate length and Wnt reporter activity in the fin. The presence of the Wnt inhibitor Dickkopf1 was enhanced in prednisolone treated skin tissue. A decreased number of mucous producing goblet cells was observed in the intestine of prednisolone treated zebrafish. Unexpectedly, proliferation in bone forming osteoblasts of the skull, homeostatic scales, as well as the brain was not decreased, opposite to the observed effects in the skin, fin, and intestine. Short-term treatment with prednisolone for a few days did not significantly alter fin regenerate length, skin cell proliferation, intestinal leukocyte number and proliferation of intestinal crypt cells. However, it affected the number of mucous-producing goblet cells in the gut. Likewise, discontinuation of prednisolone treatment for a few days saved the skin and intestine from a significant reduction of skin and intestinal cell proliferation, intestinal leukocyte number and regenerate length, but did not rescue goblet cell number. The suppressive effects of glucocorticoids in highly proliferative tissues may be relevant in the context of their therapeutic applications in patients with inflammatory diseases.


Assuntos
Glucocorticoides , Peixe-Zebra , Animais , Glucocorticoides/farmacologia , Via de Sinalização Wnt , Prednisolona/farmacologia , Homeostase
11.
Matrix Biol ; 121: 105-126, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336269

RESUMO

Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Osteogênese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Colágeno/metabolismo , Chaperonas Moleculares/genética , Mutação , Diferenciação Celular
12.
HGG Adv ; 4(2): 100186, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009414

RESUMO

TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the ß-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.


Assuntos
Displasia Ectodérmica , Dente , Animais , Camundongos , Filogenia , Peixe-Zebra , Displasia Ectodérmica/epidemiologia , Dente/patologia
13.
Front Endocrinol (Lausanne) ; 14: 1002914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755921

RESUMO

Introduction: Trimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. Results: In this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/- ) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7 ). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. Discussion: Our data support the requirement of Tric-b during early development and for bone cell differentiation.


Assuntos
Canais Iônicos , Osteogênese Imperfeita , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Canais Iônicos/genética , Osteogênese Imperfeita/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
14.
Proc Natl Acad Sci U S A ; 119(48): e2209231119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417434

RESUMO

The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo
15.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291055

RESUMO

Shikonin is a naphthoquinone compound extracted from Chinese comfrey for treating cancer. However, there are few reports on its research on vertebrate tissue regeneration. Zebrafish is an ideal model for studying organ regeneration. In this study, we found that 3-dpf of zebrafish larvae exposed to shikonin at concentrations of 0.2, 0.3, and 0.4 mg/L showed increasingly inhibited regeneration of the tail fin. Immunohistochemical staining showed that shikonin exposure from 6 to 12 hpa increased the number of apoptotic cells in the caudal fin wound of larvae and decreased the number of proliferating cells. Shikonin exposure was found to up-regulate oxidative stress, increase ROS levels, and reduce neutrophil recruitment in the early stage of wound repair. Moreover, shikonin exposure caused disordered expression of fin regeneration blastemal-related genes. The use of astaxanthin to down-regulate oxidative stress was found to significantly reduce the inhibition of caudal fin regeneration. Mixed exposure of AMPK inhibitors or fullerenes (C60) with shikonin also showed the similar rescue effect. Collectively, our study showed that shikonin inhibited fin regeneration in zebrafish larvae by the upregulation of oxidative stress level and AMPK signaling pathway. This research provides valuable information on the mechanism of action of shikonin for its safe application.


Assuntos
Fulerenos , Naftoquinonas , Animais , Peixe-Zebra/genética , Larva , Fulerenos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Naftoquinonas/farmacologia
16.
Front Immunol ; 13: 981000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059461

RESUMO

The role of T cells in appendage regeneration remains unclear. In this study, we revealed an important role for regulatory T cells (Tregs), a subset of T cells that regulate tolerance and tissue repair, in the epimorphic regeneration of zebrafish caudal fin tissue. Upon amputation, fin tissue-resident Tregs infiltrate into the blastema, a population of progenitor cells that produce new fin tissues. Conditional genetic ablation of Tregs attenuates blastemal cell proliferation during fin regeneration. Blastema-infiltrating Tregs upregulate the expression of igf2a and igf2b, and pharmacological activation of IGF signaling restores blastemal proliferation in Treg-ablated zebrafish. These findings further extend our understandings of Treg function in tissue regeneration and repair.


Assuntos
Linfócitos T Reguladores , Peixe-Zebra , Animais , Proliferação de Células , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Fish Shellfish Immunol ; 128: 196-205, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932983

RESUMO

Exosomes have garnered enormous interest for their role in physiological and pathological processes and their potential for therapeutic and diagnostic applications. In this study, exosomes were isolated from plasma of olive flounder (Paralichthys olivaceus) and their physiochemical and morphological characteristics, as well as wound healing and regeneration activities were determined. Isolated exosomes had typical characteristics, including average particle diameter (151.82 ± 9.17 nm), concentration (6.31 × 1010 particles/mL) with a membrane-bound, cup-shaped morphology. Exosome marker proteins, tetraspanins (CD63, CD9, and CD81), and acetylcholinesterase were detected, indicating the presence of exosomes in olive flounder plasma. Exosomes exhibited no toxicity in in vitro and in vivo studies, even at the highest treatment concentrations (100 and 400 µg/mL, respectively), confirming their suitability for further functional studies. Following exosome treatment (50 and 100 µg/mL), substantial cell migration with rapid closure of the open wound area in in vitro scratch wound healing assay and faster zebrafish larvae fin regeneration rate was observed compared to that of the vehicle. Moreover, exosomes exhibited immunomodulatory properties associated with wound healing, based on mRNA expression patterns in fathead minnow (FHM) cells. In conclusion, exosomes isolated from olive flounder plasma using ultracentrifugation exhibited minimal toxicity and enhanced wound healing and tissue regeneration activities. Identification and in-depth investigation of olive flounder plasma-derived exosome constituents will support the development of exosomes as an efficient therapeutic carrier system for fish medicine in the future.


Assuntos
Exossomos , Linguado , Acetilcolinesterase , Animais , Linguado/genética , RNA Mensageiro , Cicatrização/fisiologia , Peixe-Zebra/genética
18.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107164

RESUMO

Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways remain poorly understood. We focused on the early dialog between H2O2 and Sonic hedgehog (Shh) during zebrafish fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.


Assuntos
Proteínas Hedgehog , Peixe-Zebra , Animais , Proteínas Hedgehog/metabolismo , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Cicatrização , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Environ Toxicol Chem ; 41(3): 748-757, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918380

RESUMO

Combined environmental stressors that an organism experiences can have both immediate and lasting consequences. In the present study, we exposed Japanese medaka (Oryzias latipes) embryos to sublethal copper sulfate (CuSO4 ; 0, 10, and 100 ppb) in combination with different rearing temperatures (27, 30, and 33 °C) to assess acute and latent effects on development, growth, and regenerative capacity. Embryos exposed to CuSO4 and/or higher temperatures hatched significantly earlier. At 4 months post-exposure, fish exposed to low levels of CuSO4 during development had higher survival, whereas fish exposed to both 100 ppb CuSO4 and 33 °C temperatures had significantly lower survival. In addition, a sex-specific effect of embryonic CuSO4 exposure was observed as female mass decreased with increasing Cu dose. We also assessed caudal fin regenerative capabilities in both embryo-exposed fish at 4 months of age and adult medaka that were exposed to 0, 10, and 100 ppb CuSO4 at room temperature during a 14-day trial. Whereas fin regeneration was unaffected by adult exposure to Cu, fish transiently exposed during embryogenesis displayed an initial increase in fin growth rate and an increased incidence of abnormal fin morphology following regrowth. Collectively, these data suggest that developmental Cu exposure has the potential to exert long-lasting impacts to organismal growth, survival, and function. Environ Toxicol Chem 2022;41:748-757. © 2021 SETAC.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Embrião não Mamífero , Desenvolvimento Embrionário , Feminino , Masculino , Taxa de Sobrevida , Temperatura , Poluentes Químicos da Água/toxicidade
20.
Bone ; 155: 116263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34826632

RESUMO

Many key signaling molecules used to build tissues during embryonic development are re-activated at injury sites to stimulate tissue regeneration and repair. Bone morphogenetic proteins provide a classic example, but the mechanisms that lead to reactivation of BMPs following injury are still unknown. Previous studies have mapped a large "injury response element" (IRE) in the mouse Bmp5 gene that drives gene expression following bone fractures and other types of injury. Here we show that the large mouse IRE region is also activated in both zebrafish tail resection and mechanosensory hair cell injury models. Using the ability to test multiple constructs and image temporal and spatial dynamics following injury responses, we have narrowed the original size of the mouse IRE region by over 100 fold and identified a small 142 bp minimal enhancer that is rapidly induced in both mesenchymal and epithelial tissues after injury. These studies identify a small sequence that responds to evolutionarily conserved local signals in wounded tissues and suggest candidate pathways that contribute to BMP reactivation after injury.


Assuntos
Proteínas Morfogenéticas Ósseas , Peixe-Zebra , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário , Camundongos , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA